[792db7d5] | 1 | """ |
---|
| 2 | @organization: ScipyFitting module contains FitArrange , ScipyFit, |
---|
| 3 | Parameter classes.All listed classes work together to perform a |
---|
| 4 | simple fit with scipy optimizer. |
---|
| 5 | """ |
---|
[7705306] | 6 | from sans.guitools.plottables import Data1D |
---|
| 7 | from Loader import Load |
---|
| 8 | from scipy import optimize |
---|
[792db7d5] | 9 | |
---|
[7705306] | 10 | |
---|
| 11 | class FitArrange: |
---|
| 12 | def __init__(self): |
---|
| 13 | """ |
---|
[792db7d5] | 14 | Class FitArrange contains a set of data for a given model |
---|
| 15 | to perform the Fit.FitArrange must contain exactly one model |
---|
| 16 | and at least one data for the fit to be performed. |
---|
| 17 | model: the model selected by the user |
---|
| 18 | Ldata: a list of data what the user wants to fit |
---|
| 19 | |
---|
[7705306] | 20 | """ |
---|
| 21 | self.model = None |
---|
| 22 | self.dList =[] |
---|
| 23 | |
---|
| 24 | def set_model(self,model): |
---|
[792db7d5] | 25 | """ |
---|
| 26 | set_model save a copy of the model |
---|
| 27 | @param model: the model being set |
---|
| 28 | """ |
---|
[7705306] | 29 | self.model = model |
---|
| 30 | |
---|
| 31 | def add_data(self,data): |
---|
| 32 | """ |
---|
[792db7d5] | 33 | add_data fill a self.dList with data to fit |
---|
| 34 | @param data: Data to add in the list |
---|
[7705306] | 35 | """ |
---|
| 36 | if not data in self.dList: |
---|
| 37 | self.dList.append(data) |
---|
| 38 | |
---|
| 39 | def get_model(self): |
---|
[792db7d5] | 40 | """ @return: saved model """ |
---|
[7705306] | 41 | return self.model |
---|
| 42 | |
---|
| 43 | def get_data(self): |
---|
[792db7d5] | 44 | """ @return: list of data dList""" |
---|
[7705306] | 45 | return self.dList |
---|
| 46 | |
---|
| 47 | def remove_data(self,data): |
---|
| 48 | """ |
---|
| 49 | Remove one element from the list |
---|
[792db7d5] | 50 | @param data: Data to remove from dList |
---|
[7705306] | 51 | """ |
---|
| 52 | if data in self.dList: |
---|
| 53 | self.dList.remove(data) |
---|
[792db7d5] | 54 | def remove_datalist(self): |
---|
| 55 | """ empty the complet list dLst""" |
---|
| 56 | self.dList=[] |
---|
[7705306] | 57 | |
---|
| 58 | class ScipyFit: |
---|
| 59 | """ |
---|
[792db7d5] | 60 | ScipyFit performs the Fit.This class can be used as follow: |
---|
| 61 | #Do the fit SCIPY |
---|
| 62 | create an engine: engine = ScipyFit() |
---|
| 63 | Use data must be of type plottable |
---|
| 64 | Use a sans model |
---|
| 65 | |
---|
| 66 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
| 67 | is saved in FitArrange object. |
---|
| 68 | engine.set_data(data,Uid) |
---|
| 69 | |
---|
| 70 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
| 71 | @note: Set_param() if used must always preceded set_model() |
---|
| 72 | for the fit to be performed.In case of Scipyfit set_param is called in |
---|
| 73 | fit () automatically. |
---|
| 74 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
| 75 | |
---|
| 76 | Add model with a dictionnary of FitArrangeList{} where Uid is a key and model |
---|
| 77 | is save in FitArrange object. |
---|
| 78 | engine.set_model(model,Uid) |
---|
| 79 | |
---|
| 80 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
| 81 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
[7705306] | 82 | """ |
---|
[792db7d5] | 83 | def __init__(self): |
---|
| 84 | """ |
---|
| 85 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
| 86 | with Uid as keys |
---|
| 87 | """ |
---|
[7705306] | 88 | self.fitArrangeList={} |
---|
| 89 | |
---|
| 90 | def fit(self,pars, qmin=None, qmax=None): |
---|
| 91 | """ |
---|
[792db7d5] | 92 | Performs fit with scipy optimizer.It can only perform fit with one model |
---|
| 93 | and a set of data. |
---|
| 94 | @note: Cannot perform more than one fit at the time. |
---|
| 95 | |
---|
| 96 | @param pars: Dictionary of parameter names for the model and their values |
---|
| 97 | @param qmin: The minimum value of data's range to be fit |
---|
| 98 | @param qmax: The maximum value of data's range to be fit |
---|
| 99 | @return chisqr: Value of the goodness of fit metric |
---|
| 100 | @return out: list of parameter with the best value found during fitting |
---|
| 101 | @return cov: Covariance matrix |
---|
[7705306] | 102 | """ |
---|
[792db7d5] | 103 | # fitproblem contains first fitArrange object(one model and a list of data) |
---|
[7705306] | 104 | fitproblem=self.fitArrangeList.values()[0] |
---|
| 105 | listdata=[] |
---|
| 106 | model = fitproblem.get_model() |
---|
| 107 | listdata = fitproblem.get_data() |
---|
| 108 | |
---|
[792db7d5] | 109 | #Create list of Parameter instances and save parameters values in model |
---|
[cf3b781] | 110 | parameters = self.set_param(model,model.name,pars) |
---|
[7705306] | 111 | |
---|
[792db7d5] | 112 | # Concatenate dList set (contains one or more data)before fitting |
---|
[7705306] | 113 | xtemp,ytemp,dytemp=self._concatenateData( listdata) |
---|
[792db7d5] | 114 | |
---|
| 115 | #print "dytemp",dytemp |
---|
| 116 | #Assign a fit range is not boundaries were given |
---|
[7705306] | 117 | if qmin==None: |
---|
| 118 | qmin= min(xtemp) |
---|
| 119 | if qmax==None: |
---|
[792db7d5] | 120 | qmax= max(xtemp) |
---|
| 121 | |
---|
| 122 | #perform the fit |
---|
[7705306] | 123 | chisqr, out, cov = fitHelper(model,parameters, xtemp,ytemp, dytemp ,qmin,qmax) |
---|
| 124 | return chisqr, out, cov |
---|
| 125 | |
---|
| 126 | def _concatenateData(self, listdata=[]): |
---|
[792db7d5] | 127 | """ |
---|
| 128 | _concatenateData method concatenates each fields of all data contains ins listdata. |
---|
| 129 | @param listdata: list of data |
---|
| 130 | |
---|
| 131 | @return xtemp, ytemp,dytemp: x,y,dy respectively of data all combined |
---|
| 132 | if xi,yi,dyi of two or more data are the same the second appearance of xi,yi, |
---|
| 133 | dyi is ignored in the concatenation. |
---|
| 134 | |
---|
| 135 | @raise: if listdata is empty will return None |
---|
| 136 | @raise: if data in listdata don't contain dy field ,will create an error |
---|
| 137 | during fitting |
---|
| 138 | """ |
---|
[7705306] | 139 | if listdata==[]: |
---|
| 140 | raise ValueError, " data list missing" |
---|
| 141 | else: |
---|
| 142 | xtemp=[] |
---|
| 143 | ytemp=[] |
---|
| 144 | dytemp=[] |
---|
| 145 | |
---|
| 146 | for data in listdata: |
---|
| 147 | for i in range(len(data.x)): |
---|
| 148 | if not data.x[i] in xtemp: |
---|
| 149 | xtemp.append(data.x[i]) |
---|
| 150 | |
---|
| 151 | if not data.y[i] in ytemp: |
---|
| 152 | ytemp.append(data.y[i]) |
---|
[792db7d5] | 153 | if data.dy and len(data.dy)>0: |
---|
| 154 | if not data.dy[i] in dytemp: |
---|
| 155 | dytemp.append(data.dy[i]) |
---|
| 156 | else: |
---|
| 157 | raise ValueError,"dy is missing will not be able to fit later on" |
---|
[7705306] | 158 | return xtemp, ytemp,dytemp |
---|
| 159 | |
---|
| 160 | def set_model(self,model,Uid): |
---|
[792db7d5] | 161 | """ |
---|
| 162 | Set model in a FitArrange object and add that object in a dictionary |
---|
| 163 | with key Uid. |
---|
| 164 | @param model: the model added |
---|
| 165 | @param Uid: unique key corresponding to a fitArrange object with model |
---|
| 166 | """ |
---|
| 167 | #A fitArrange is already created but contains dList only at Uid |
---|
[7705306] | 168 | if self.fitArrangeList.has_key(Uid): |
---|
| 169 | self.fitArrangeList[Uid].set_model(model) |
---|
| 170 | else: |
---|
[792db7d5] | 171 | #no fitArrange object has been create with this Uid |
---|
[7705306] | 172 | fitproblem= FitArrange() |
---|
| 173 | fitproblem.set_model(model) |
---|
| 174 | self.fitArrangeList[Uid]=fitproblem |
---|
| 175 | |
---|
| 176 | def set_data(self,data,Uid): |
---|
[792db7d5] | 177 | """ Receives plottable, creates a list of data to fit,set data |
---|
| 178 | in a FitArrange object and adds that object in a dictionary |
---|
| 179 | with key Uid. |
---|
| 180 | @param data: data added |
---|
| 181 | @param Uid: unique key corresponding to a fitArrange object with data |
---|
| 182 | """ |
---|
| 183 | #A fitArrange is already created but contains model only at Uid |
---|
[7705306] | 184 | if self.fitArrangeList.has_key(Uid): |
---|
| 185 | self.fitArrangeList[Uid].add_data(data) |
---|
| 186 | else: |
---|
[792db7d5] | 187 | #no fitArrange object has been create with this Uid |
---|
[7705306] | 188 | fitproblem= FitArrange() |
---|
| 189 | fitproblem.add_data(data) |
---|
| 190 | self.fitArrangeList[Uid]=fitproblem |
---|
| 191 | |
---|
| 192 | def get_model(self,Uid): |
---|
[792db7d5] | 193 | """ |
---|
| 194 | @param Uid: Uid is key in the dictionary containing the model to return |
---|
| 195 | @return a model at this uid or None if no FitArrange element was created |
---|
| 196 | with this Uid |
---|
| 197 | """ |
---|
| 198 | if self.fitArrangeList.has_key(Uid): |
---|
| 199 | return self.fitArrangeList[Uid].get_model() |
---|
| 200 | else: |
---|
| 201 | return None |
---|
[7705306] | 202 | |
---|
[cf3b781] | 203 | def set_param(self,model,name, pars): |
---|
[792db7d5] | 204 | """ |
---|
| 205 | Recieve a dictionary of parameter and save it |
---|
| 206 | @param model: model on with parameter values are set |
---|
| 207 | @param name: model name |
---|
| 208 | @param pars: dictionary of paramaters name and value |
---|
| 209 | pars={parameter's name: parameter's value} |
---|
| 210 | @return list of Parameter instance |
---|
| 211 | """ |
---|
[7705306] | 212 | parameters=[] |
---|
| 213 | if model==None: |
---|
| 214 | raise ValueError, "Cannot set parameters for empty model" |
---|
| 215 | else: |
---|
[cf3b781] | 216 | model.name=name |
---|
[7705306] | 217 | for key, value in pars.iteritems(): |
---|
| 218 | param = Parameter(model, key, value) |
---|
| 219 | parameters.append(param) |
---|
| 220 | return parameters |
---|
| 221 | |
---|
[cf3b781] | 222 | def remove_data(self,Uid,data=None): |
---|
[792db7d5] | 223 | """ remove one or all data.if data ==None will remove the whole |
---|
| 224 | list of data at Uid; else will remove only data in that list. |
---|
| 225 | @param Uid: unique id containing FitArrange object with data |
---|
| 226 | @param data:data to be removed |
---|
| 227 | """ |
---|
| 228 | if data==None: |
---|
| 229 | # remove all element in data list |
---|
[cf3b781] | 230 | if self.fitArrangeList.has_key(Uid): |
---|
| 231 | self.fitArrangeList[Uid].remove_datalist() |
---|
| 232 | else: |
---|
[792db7d5] | 233 | #remove only data in dList |
---|
[cf3b781] | 234 | if self.fitArrangeList.has_key(Uid): |
---|
| 235 | self.fitArrangeList[Uid].remove_data(data) |
---|
| 236 | |
---|
| 237 | def remove_model(self,Uid): |
---|
[792db7d5] | 238 | """ |
---|
| 239 | remove model in FitArrange object with Uid. |
---|
| 240 | @param Uid: Unique id corresponding to the FitArrange object |
---|
| 241 | where model must be removed. |
---|
| 242 | """ |
---|
[cf3b781] | 243 | if self.fitArrangeList.has_key(Uid): |
---|
| 244 | self.fitArrangeList[Uid].remove_model() |
---|
[7705306] | 245 | |
---|
| 246 | |
---|
| 247 | class Parameter: |
---|
| 248 | """ |
---|
| 249 | Class to handle model parameters |
---|
| 250 | """ |
---|
| 251 | def __init__(self, model, name, value=None): |
---|
| 252 | self.model = model |
---|
| 253 | self.name = name |
---|
| 254 | if not value==None: |
---|
| 255 | self.model.setParam(self.name, value) |
---|
| 256 | |
---|
| 257 | def set(self, value): |
---|
| 258 | """ |
---|
| 259 | Set the value of the parameter |
---|
| 260 | """ |
---|
| 261 | self.model.setParam(self.name, value) |
---|
| 262 | |
---|
| 263 | def __call__(self): |
---|
| 264 | """ |
---|
| 265 | Return the current value of the parameter |
---|
| 266 | """ |
---|
| 267 | return self.model.getParam(self.name) |
---|
| 268 | |
---|
| 269 | def fitHelper(model, pars, x, y, err_y ,qmin=None, qmax=None): |
---|
| 270 | """ |
---|
| 271 | Fit function |
---|
| 272 | @param model: sans model object |
---|
| 273 | @param pars: list of parameters |
---|
| 274 | @param x: vector of x data |
---|
| 275 | @param y: vector of y data |
---|
| 276 | @param err_y: vector of y errors |
---|
[792db7d5] | 277 | @return chisqr: Value of the goodness of fit metric |
---|
| 278 | @return out: list of parameter with the best value found during fitting |
---|
| 279 | @return cov: Covariance matrix |
---|
[7705306] | 280 | """ |
---|
| 281 | def f(params): |
---|
| 282 | """ |
---|
| 283 | Calculates the vector of residuals for each point |
---|
| 284 | in y for a given set of input parameters. |
---|
| 285 | @param params: list of parameter values |
---|
| 286 | @return: vector of residuals |
---|
| 287 | """ |
---|
| 288 | i = 0 |
---|
| 289 | for p in pars: |
---|
| 290 | p.set(params[i]) |
---|
| 291 | i += 1 |
---|
| 292 | |
---|
| 293 | residuals = [] |
---|
| 294 | for j in range(len(x)): |
---|
| 295 | if x[j]>qmin and x[j]<qmax: |
---|
| 296 | residuals.append( ( y[j] - model.runXY(x[j]) ) / err_y[j] ) |
---|
[cf3b781] | 297 | |
---|
[7705306] | 298 | return residuals |
---|
| 299 | |
---|
| 300 | def chi2(params): |
---|
| 301 | """ |
---|
| 302 | Calculates chi^2 |
---|
| 303 | @param params: list of parameter values |
---|
| 304 | @return: chi^2 |
---|
| 305 | """ |
---|
| 306 | sum = 0 |
---|
| 307 | res = f(params) |
---|
| 308 | for item in res: |
---|
| 309 | sum += item*item |
---|
| 310 | return sum |
---|
| 311 | |
---|
| 312 | p = [param() for param in pars] |
---|
| 313 | out, cov_x, info, mesg, success = optimize.leastsq(f, p, full_output=1, warning=True) |
---|
| 314 | print info, mesg, success |
---|
| 315 | # Calculate chi squared |
---|
| 316 | if len(pars)>1: |
---|
| 317 | chisqr = chi2(out) |
---|
| 318 | elif len(pars)==1: |
---|
| 319 | chisqr = chi2([out]) |
---|
| 320 | |
---|
| 321 | return chisqr, out, cov_x |
---|
| 322 | |
---|