source: sasview/park_integration/ParkFitting.py @ 658032c

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 658032c was fe886ee, checked in by Gervaise Alina <gervyh@…>, 16 years ago

fit between parameters range

  • Property mode set to 100644
File size: 4.8 KB
Line 
1"""
2    @organization: ParkFitting module contains SansParameter,Model,Data
3    FitArrange, ParkFit,Parameter classes.All listed classes work together to perform a
4    simple fit with park optimizer.
5"""
6import time
7import numpy
8import park
9from park import fit,fitresult
10from park import assembly
11from park.fitmc import FitSimplex, FitMC
12
13#from Loader import Load
14from AbstractFitEngine import FitEngine
15
16
17class ParkFit(FitEngine):
18    """
19        ParkFit performs the Fit.This class can be used as follow:
20        #Do the fit Park
21        create an engine: engine = ParkFit()
22        Use data must be of type plottable
23        Use a sans model
24       
25        Add data with a dictionnary of FitArrangeList where Uid is a key and data
26        is saved in FitArrange object.
27        engine.set_data(data,Uid)
28       
29        Set model parameter "M1"= model.name add {model.parameter.name:value}.
30        @note: Set_param() if used must always preceded set_model()
31             for the fit to be performed.
32        engine.set_param( model,"M1", {'A':2,'B':4})
33       
34        Add model with a dictionnary of FitArrangeList{} where Uid is a key and model
35        is save in FitArrange object.
36        engine.set_model(model,Uid)
37       
38        engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]]
39        chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax)
40        @note: {model.parameter.name:value} is ignored in fit function since
41        the user should make sure to call set_param himself.
42    """
43    def __init__(self):
44        """
45            Creates a dictionary (self.fitArrangeList={})of FitArrange elements
46            with Uid as keys
47        """
48        self.fitArrangeDict={}
49        self.paramList=[]
50       
51    def createAssembly(self):
52        """
53        Extract sansmodel and sansdata from self.FitArrangelist ={Uid:FitArrange}
54        Create parkmodel and park data ,form a list couple of parkmodel and parkdata
55        create an assembly self.problem=  park.Assembly([(parkmodel,parkdata)])
56        """
57        mylist=[]
58        listmodel=[]
59        i=0
60        fitproblems=[]
61        for id ,fproblem in self.fitArrangeDict.iteritems():
62            if fproblem.get_to_fit()==1:
63                fitproblems.append(fproblem)
64               
65        if len(fitproblems)==0 : 
66            raise RuntimeError, "No Assembly scheduled for Park fitting."
67            return
68        for item in fitproblems:
69            parkmodel = item.get_model()
70            for p in parkmodel.parameterset:
71                ## does not allow status change for constraint parameters
72                if p.status!= 'computed':
73                    if p._getname()in item.pars:
74                        ## make parameters selected for fit will be between boundaries
75                        p.set( p.range )
76                               
77                    else:
78                        p.status= 'fixed'
79             
80            i+=1
81            Ldata=item.get_data()
82            #parkdata=self._concatenateData(Ldata)
83            parkdata=Ldata
84            fitness=(parkmodel,parkdata)
85            mylist.append(fitness)
86       
87        self.problem =  park.Assembly(mylist)
88       
89   
90    def fit(self,handler=None):
91        """
92            Performs fit with park.fit module.It can  perform fit with one model
93            and a set of data, more than two fit of  one model and sets of data or
94            fit with more than two model associated with their set of data and constraints
95           
96           
97            @param pars: Dictionary of parameter names for the model and their values.
98            @param qmin: The minimum value of data's range to be fit
99            @param qmax: The maximum value of data's range to be fit
100            @note:all parameter are ignored most of the time.Are just there to keep ScipyFit
101            and ParkFit interface the same.
102            @return result.fitness: Value of the goodness of fit metric
103            @return result.pvec: list of parameter with the best value found during fitting
104            @return result.cov: Covariance matrix
105        """
106        self.createAssembly()
107   
108        localfit = FitSimplex()
109        localfit.ftol = 1e-8
110       
111        # See `park.fitresult.FitHandler` for details.
112        fitter = FitMC(localfit=localfit, start_points=1)
113        if handler == None:
114            handler= fitresult.ConsoleUpdate(improvement_delta=0.1)
115     
116           
117        result = fit.fit(self.problem,
118                         fitter=fitter,
119                         handler= handler)
120        self.problem.all_results(result)
121        if result !=None:
122            return result
123        else:
124            raise ValueError, "SVD did not converge"
125           
126
127       
128   
129   
Note: See TracBrowser for help on using the repository browser.