source: sasview/park_integration/ParkFitting.py @ fa38d83

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since fa38d83 was 916a15f, checked in by Gervaise Alina <gervyh@…>, 16 years ago

changes for presentation on tests

  • Property mode set to 100644
File size: 4.9 KB
Line 
1"""
2    @organization: ParkFitting module contains SansParameter,Model,Data
3    FitArrange, ParkFit,Parameter classes.All listed classes work together to perform a
4    simple fit with park optimizer.
5"""
6import time
7import numpy
8import park
9from park import fit,fitresult
10from park import assembly
11from park.fitmc import FitSimplex, FitMC
12from sans.guitools.plottables import Data1D
13from Loader import Load
14from AbstractFitEngine import FitEngine,FitArrange,Model
15
16
17class ParkFit(FitEngine):
18    """
19        ParkFit performs the Fit.This class can be used as follow:
20        #Do the fit Park
21        create an engine: engine = ParkFit()
22        Use data must be of type plottable
23        Use a sans model
24       
25        Add data with a dictionnary of FitArrangeList where Uid is a key and data
26        is saved in FitArrange object.
27        engine.set_data(data,Uid)
28       
29        Set model parameter "M1"= model.name add {model.parameter.name:value}.
30        @note: Set_param() if used must always preceded set_model()
31             for the fit to be performed.
32        engine.set_param( model,"M1", {'A':2,'B':4})
33       
34        Add model with a dictionnary of FitArrangeList{} where Uid is a key and model
35        is save in FitArrange object.
36        engine.set_model(model,Uid)
37       
38        engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]]
39        chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax)
40        @note: {model.parameter.name:value} is ignored in fit function since
41        the user should make sure to call set_param himself.
42    """
43    def __init__(self):
44        """
45            Creates a dictionary (self.fitArrangeList={})of FitArrange elements
46            with Uid as keys
47        """
48        self.fitArrangeDict={}
49        self.paramList=[]
50       
51    def createAssembly(self):
52        """
53        Extract sansmodel and sansdata from self.FitArrangelist ={Uid:FitArrange}
54        Create parkmodel and park data ,form a list couple of parkmodel and parkdata
55        create an assembly self.problem=  park.Assembly([(parkmodel,parkdata)])
56        """
57        mylist=[]
58        listmodel=[]
59        i=0
60        for k,value in self.fitArrangeDict.iteritems():
61            parkmodel = value.get_model()
62            for p in parkmodel.parameterset:
63                if p._getname()in self.paramList and not p.iscomputed():
64                    p.status = 'fitted' # make it a fitted parameter
65                            #iscomputed  paramter with string inside
66               
67            i+=1
68            Ldata=value.get_data()
69            parkdata=self._concatenateData(Ldata)
70           
71            fitness=(parkmodel,parkdata)
72            mylist.append(fitness)
73   
74        self.problem =  park.Assembly(mylist)
75       
76   
77    def fit(self, qmin=None, qmax=None):
78        """
79            Performs fit with park.fit module.It can  perform fit with one model
80            and a set of data, more than two fit of  one model and sets of data or
81            fit with more than two model associated with their set of data and constraints
82           
83           
84            @param pars: Dictionary of parameter names for the model and their values.
85            @param qmin: The minimum value of data's range to be fit
86            @param qmax: The maximum value of data's range to be fit
87            @note:all parameter are ignored most of the time.Are just there to keep ScipyFit
88            and ParkFit interface the same.
89            @return result.fitness: Value of the goodness of fit metric
90            @return result.pvec: list of parameter with the best value found during fitting
91            @return result.cov: Covariance matrix
92        """
93        self.createAssembly()
94   
95        localfit = FitSimplex()
96        localfit.ftol = 1e-8
97        # fitmc(fitness,localfit,n,handler):
98        #Run a monte carlo fit.
99        #This procedure maps a local optimizer across a set of n initial points.
100        #The initial parameter value defined by the fitness parameters defines
101        #one initial point.  The remainder are randomly generated within the
102        #bounds of the problem.
103        #localfit is the local optimizer to use.  It should be a bounded
104        #optimizer following the `park.fitmc.LocalFit` interface.
105        #handler accepts updates to the current best set of fit parameters.
106        # See `park.fitresult.FitHandler` for details.
107        fitter = FitMC(localfit=localfit)
108        #result = fit.fit(self.problem,
109        #             fitter=fitter,
110        #            handler= GuiUpdate(window))
111        result = fit.fit(self.problem,
112                         fitter=fitter,
113                         handler= fitresult.ConsoleUpdate(improvement_delta=0.1))
114        if result !=None:
115            return result
116        else:
117            raise ValueError, "SVD did not converge"
118           
119       
120       
121   
122   
Note: See TracBrowser for help on using the repository browser.