1 | |
---|
2 | |
---|
3 | |
---|
4 | """ |
---|
5 | ParkFitting module contains SansParameter,Model,Data |
---|
6 | FitArrange, ParkFit,Parameter classes.All listed classes work together |
---|
7 | to perform a simple fit with park optimizer. |
---|
8 | """ |
---|
9 | #import time |
---|
10 | import numpy |
---|
11 | #import park |
---|
12 | from park import fit |
---|
13 | from park import fitresult |
---|
14 | from park.assembly import Assembly |
---|
15 | from park.fitmc import FitSimplex |
---|
16 | import park.fitmc |
---|
17 | from park.fitmc import FitMC |
---|
18 | |
---|
19 | #from Loader import Load |
---|
20 | from sans.fit.AbstractFitEngine import FitEngine |
---|
21 | |
---|
22 | |
---|
23 | |
---|
24 | class MyAssembly(Assembly): |
---|
25 | def __init__(self, models, curr_thread=None): |
---|
26 | Assembly.__init__(self, models) |
---|
27 | self.curr_thread = curr_thread |
---|
28 | |
---|
29 | def eval(self): |
---|
30 | """ |
---|
31 | Recalculate the theory functions, and from them, the |
---|
32 | residuals and chisq. |
---|
33 | |
---|
34 | :note: Call this after the parameters have been updated. |
---|
35 | """ |
---|
36 | # Handle abort from a separate thread. |
---|
37 | self._cancel = False |
---|
38 | if self.curr_thread != None: |
---|
39 | try: |
---|
40 | self.curr_thread.isquit() |
---|
41 | except: |
---|
42 | self._cancel = True |
---|
43 | |
---|
44 | # Evaluate the computed parameters |
---|
45 | self._fitexpression() |
---|
46 | |
---|
47 | # Check that the resulting parameters are in a feasible region. |
---|
48 | if not self.isfeasible(): return numpy.inf |
---|
49 | |
---|
50 | resid = [] |
---|
51 | k = len(self._fitparameters) |
---|
52 | for m in self.parts: |
---|
53 | # In order to support abort, need to be able to propagate an |
---|
54 | # external abort signal from self.abort() into an abort signal |
---|
55 | # for the particular model. Can't see a way to do this which |
---|
56 | # doesn't involve setting a state variable. |
---|
57 | self._current_model = m |
---|
58 | if self._cancel: return numpy.inf |
---|
59 | if m.isfitted and m.weight != 0: |
---|
60 | m.residuals = m.fitness.residuals() |
---|
61 | N = len(m.residuals) |
---|
62 | m.degrees_of_freedom = N-k if N>k else 1 |
---|
63 | m.chisq = numpy.sum(m.residuals**2) |
---|
64 | resid.append(m.weight*m.residuals) |
---|
65 | self.residuals = numpy.hstack(resid) |
---|
66 | N = len(self.residuals) |
---|
67 | self.degrees_of_freedom = N-k if N>k else 1 |
---|
68 | self.chisq = numpy.sum(self.residuals**2) |
---|
69 | return self.chisq |
---|
70 | |
---|
71 | class ParkFit(FitEngine): |
---|
72 | """ |
---|
73 | ParkFit performs the Fit.This class can be used as follow: |
---|
74 | #Do the fit Park |
---|
75 | create an engine: engine = ParkFit() |
---|
76 | Use data must be of type plottable |
---|
77 | Use a sans model |
---|
78 | |
---|
79 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
80 | is saved in FitArrange object. |
---|
81 | engine.set_data(data,Uid) |
---|
82 | |
---|
83 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
84 | |
---|
85 | :note: Set_param() if used must always preceded set_model() |
---|
86 | for the fit to be performed. |
---|
87 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
88 | |
---|
89 | Add model with a dictionnary of FitArrangeList{} where Uid is a key |
---|
90 | and model |
---|
91 | is save in FitArrange object. |
---|
92 | engine.set_model(model,Uid) |
---|
93 | |
---|
94 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
95 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
96 | |
---|
97 | :note: {model.parameter.name:value} is ignored in fit function since |
---|
98 | the user should make sure to call set_param himself. |
---|
99 | |
---|
100 | """ |
---|
101 | def __init__(self): |
---|
102 | """ |
---|
103 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
104 | with Uid as keys |
---|
105 | """ |
---|
106 | FitEngine.__init__(self) |
---|
107 | self.fit_arrange_dict = {} |
---|
108 | self.param_list = [] |
---|
109 | |
---|
110 | def create_assembly(self, curr_thread): |
---|
111 | """ |
---|
112 | Extract sansmodel and sansdata from |
---|
113 | self.FitArrangelist ={Uid:FitArrange} |
---|
114 | Create parkmodel and park data ,form a list couple of parkmodel |
---|
115 | and parkdata |
---|
116 | create an assembly self.problem= park.Assembly([(parkmodel,parkdata)]) |
---|
117 | """ |
---|
118 | mylist = [] |
---|
119 | #listmodel = [] |
---|
120 | #i = 0 |
---|
121 | fitproblems = [] |
---|
122 | for fproblem in self.fit_arrange_dict.itervalues(): |
---|
123 | if fproblem.get_to_fit() == 1: |
---|
124 | fitproblems.append(fproblem) |
---|
125 | if len(fitproblems) == 0: |
---|
126 | raise RuntimeError, "No Assembly scheduled for Park fitting." |
---|
127 | return |
---|
128 | for item in fitproblems: |
---|
129 | parkmodel = item.get_model() |
---|
130 | for p in parkmodel.parameterset: |
---|
131 | ## does not allow status change for constraint parameters |
---|
132 | if p.status != 'computed': |
---|
133 | if p.get_name()in item.pars: |
---|
134 | ## make parameters selected for |
---|
135 | #fit will be between boundaries |
---|
136 | p.set(p.range) |
---|
137 | else: |
---|
138 | p.status = 'fixed' |
---|
139 | data_list = item.get_data() |
---|
140 | parkdata = data_list |
---|
141 | fitness = (parkmodel, parkdata) |
---|
142 | mylist.append(fitness) |
---|
143 | self.problem = MyAssembly(models=mylist, curr_thread=curr_thread) |
---|
144 | |
---|
145 | |
---|
146 | |
---|
147 | def fit(self, q=None, handler=None, curr_thread=None): |
---|
148 | """ |
---|
149 | Performs fit with park.fit module.It can perform fit with one model |
---|
150 | and a set of data, more than two fit of one model and sets of data or |
---|
151 | fit with more than two model associated with their set of data and |
---|
152 | constraints |
---|
153 | |
---|
154 | :param pars: Dictionary of parameter names for the model and their |
---|
155 | values. |
---|
156 | :param qmin: The minimum value of data's range to be fit |
---|
157 | :param qmax: The maximum value of data's range to be fit |
---|
158 | |
---|
159 | :note: all parameter are ignored most of the time.Are just there |
---|
160 | to keep ScipyFit and ParkFit interface the same. |
---|
161 | |
---|
162 | :return: result.fitness Value of the goodness of fit metric |
---|
163 | :return: result.pvec list of parameter with the best value |
---|
164 | found during fitting |
---|
165 | :return: result.cov Covariance matrix |
---|
166 | |
---|
167 | """ |
---|
168 | self.create_assembly(curr_thread=curr_thread) |
---|
169 | localfit = FitSimplex() |
---|
170 | localfit.ftol = 1e-8 |
---|
171 | |
---|
172 | # See `park.fitresult.FitHandler` for details. |
---|
173 | fitter = FitMC(localfit=localfit, start_points=1) |
---|
174 | if handler == None: |
---|
175 | handler = fitresult.ConsoleUpdate(improvement_delta=0.1) |
---|
176 | result = fit.fit(self.problem, fitter=fitter, handler=handler) |
---|
177 | self.problem.all_results(result) |
---|
178 | if result != None: |
---|
179 | if q != None: |
---|
180 | q.put(result) |
---|
181 | return q |
---|
182 | return result |
---|
183 | else: |
---|
184 | raise ValueError, "SVD did not converge" |
---|
185 | |
---|