source: sasview/park_integration/ParkFitting.py @ 579ba85

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 579ba85 was 48882d1, checked in by Gervaise Alina <gervyh@…>, 16 years ago

park fitting with new model and new data

  • Property mode set to 100644
File size: 5.2 KB
Line 
1"""
2    @organization: ParkFitting module contains SansParameter,Model,Data
3    FitArrange, ParkFit,Parameter classes.All listed classes work together to perform a
4    simple fit with park optimizer.
5"""
6import time
7import numpy
8import park
9from park import fit,fitresult
10from park import assembly
11from park.fitmc import FitSimplex, FitMC
12from sans.guitools.plottables import Data1D
13from Loader import Load
14from AbstractFitEngine import FitEngine,FitArrange,Model
15
16class ParkFit(FitEngine):
17    """
18        ParkFit performs the Fit.This class can be used as follow:
19        #Do the fit Park
20        create an engine: engine = ParkFit()
21        Use data must be of type plottable
22        Use a sans model
23       
24        Add data with a dictionnary of FitArrangeList where Uid is a key and data
25        is saved in FitArrange object.
26        engine.set_data(data,Uid)
27       
28        Set model parameter "M1"= model.name add {model.parameter.name:value}.
29        @note: Set_param() if used must always preceded set_model()
30             for the fit to be performed.
31        engine.set_param( model,"M1", {'A':2,'B':4})
32       
33        Add model with a dictionnary of FitArrangeList{} where Uid is a key and model
34        is save in FitArrange object.
35        engine.set_model(model,Uid)
36       
37        engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]]
38        chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax)
39        @note: {model.parameter.name:value} is ignored in fit function since
40        the user should make sure to call set_param himself.
41    """
42    def __init__(self,data=[]):
43        """
44            Creates a dictionary (self.fitArrangeList={})of FitArrange elements
45            with Uid as keys
46        """
47        self.fitArrangeList={}
48        self.paramList=[]
49       
50    def createProblem(self):
51        """
52        Extract sansmodel and sansdata from self.FitArrangelist ={Uid:FitArrange}
53        Create parkmodel and park data ,form a list couple of parkmodel and parkdata
54        create an assembly self.problem=  park.Assembly([(parkmodel,parkdata)])
55        """
56        print "ParkFitting: In createproblem"
57        mylist=[]
58        listmodel=[]
59        i=0
60        for k,value in self.fitArrangeList.iteritems():
61            #sansmodel=value.get_model()
62            #wrap sans model
63            #parkmodel = Model(sansmodel)
64            parkmodel = value.get_model()
65            #print "ParkFitting: createproblem: just create a model",parkmodel.parameterset
66            for p in parkmodel.parameterset:
67                #self.param_list.append(p._getname())
68                #if p.isfixed():
69                #print 'parameters',p.name
70                print "parkfitting: self.paramList",self.paramList
71                if p.isfixed() and p._getname()in self.paramList:
72                    p.set([-numpy.inf,numpy.inf])
73            i+=1   
74            Ldata=value.get_data()
75            parkdata=self._concatenateData(Ldata)
76           
77            couple=(parkmodel,parkdata)
78            #print "Parkfitting: fitness",couple   
79            mylist.append(couple)
80        #print "mylist",mylist
81        self.problem =  park.Assembly(mylist)
82       
83   
84    def fit(self, qmin=None, qmax=None):
85        """
86            Performs fit with park.fit module.It can  perform fit with one model
87            and a set of data, more than two fit of  one model and sets of data or
88            fit with more than two model associated with their set of data and constraints
89           
90           
91            @param pars: Dictionary of parameter names for the model and their values.
92            @param qmin: The minimum value of data's range to be fit
93            @param qmax: The maximum value of data's range to be fit
94            @note:all parameter are ignored most of the time.Are just there to keep ScipyFit
95            and ParkFit interface the same.
96            @return result.fitness: Value of the goodness of fit metric
97            @return result.pvec: list of parameter with the best value found during fitting
98            @return result.cov: Covariance matrix
99        """
100        #from numpy.linalg.linalg.LinAlgError import LinAlgError
101        #print "Parkfitting: fit method probably breaking just right before \
102        #call fit"
103        self.createProblem()
104        pars=self.problem.fit_parameters()
105        self.problem.eval()
106        #print "M0.B",self.problem[1].parameterset['B'].value,self.problem[0].parameterset['B'].value
107
108        localfit = FitSimplex()
109        localfit.ftol = 1e-8
110        fitter = FitMC(localfit=localfit)
111        print "ParkFitting: result1"
112        result = fit.fit(self.problem,
113                     fitter=fitter,
114                     handler= fitresult.ConsoleUpdate(improvement_delta=0.1))
115        print "ParkFitting: result",result
116        if result !=None:
117            #for p in result.parameters:
118            #    print "fit in park fitting", p.name, p.value,p.stderr
119            #return result.fitness,result.pvec,result.cov,result
120            return result
121        else:
122            raise ValueError, "SVD did not converge"
123           
124       
125       
126   
127   
Note: See TracBrowser for help on using the repository browser.