[aa36f96] | 1 | |
---|
| 2 | |
---|
| 3 | |
---|
[792db7d5] | 4 | """ |
---|
[aa36f96] | 5 | ParkFitting module contains SansParameter,Model,Data |
---|
[b2f25dc5] | 6 | FitArrange, ParkFit,Parameter classes.All listed classes work together |
---|
| 7 | to perform a simple fit with park optimizer. |
---|
[792db7d5] | 8 | """ |
---|
[89f3b66] | 9 | #import time |
---|
[dfd3577] | 10 | import numpy |
---|
[b2f25dc5] | 11 | #import park |
---|
| 12 | from park import fit |
---|
| 13 | from park import fitresult |
---|
| 14 | from park.assembly import Assembly |
---|
| 15 | from park.fitmc import FitSimplex |
---|
[dfd3577] | 16 | import park.fitmc |
---|
[b2f25dc5] | 17 | from park.fitmc import FitMC |
---|
[7d0c1a8] | 18 | |
---|
[61cb28d] | 19 | #from Loader import Load |
---|
[b2f25dc5] | 20 | from sans.fit.AbstractFitEngine import FitEngine |
---|
[d4b0687] | 21 | |
---|
[fadea71] | 22 | |
---|
[dfd3577] | 23 | |
---|
| 24 | class MyAssembly(Assembly): |
---|
| 25 | def __init__(self, models, curr_thread=None): |
---|
| 26 | Assembly.__init__(self, models) |
---|
| 27 | self.curr_thread = curr_thread |
---|
| 28 | |
---|
| 29 | def eval(self): |
---|
| 30 | """ |
---|
| 31 | Recalculate the theory functions, and from them, the |
---|
| 32 | residuals and chisq. |
---|
| 33 | |
---|
| 34 | :note: Call this after the parameters have been updated. |
---|
| 35 | """ |
---|
| 36 | # Handle abort from a separate thread. |
---|
| 37 | self._cancel = False |
---|
| 38 | if self.curr_thread != None: |
---|
| 39 | try: |
---|
| 40 | self.curr_thread.isquit() |
---|
| 41 | except: |
---|
| 42 | self._cancel = True |
---|
| 43 | |
---|
| 44 | # Evaluate the computed parameters |
---|
| 45 | self._fitexpression() |
---|
| 46 | |
---|
| 47 | # Check that the resulting parameters are in a feasible region. |
---|
| 48 | if not self.isfeasible(): return numpy.inf |
---|
| 49 | |
---|
| 50 | resid = [] |
---|
| 51 | k = len(self._fitparameters) |
---|
| 52 | for m in self.parts: |
---|
| 53 | # In order to support abort, need to be able to propagate an |
---|
| 54 | # external abort signal from self.abort() into an abort signal |
---|
| 55 | # for the particular model. Can't see a way to do this which |
---|
| 56 | # doesn't involve setting a state variable. |
---|
| 57 | self._current_model = m |
---|
| 58 | if self._cancel: return numpy.inf |
---|
| 59 | if m.isfitted and m.weight != 0: |
---|
| 60 | m.residuals = m.fitness.residuals() |
---|
| 61 | N = len(m.residuals) |
---|
| 62 | m.degrees_of_freedom = N-k if N>k else 1 |
---|
| 63 | m.chisq = numpy.sum(m.residuals**2) |
---|
| 64 | resid.append(m.weight*m.residuals) |
---|
| 65 | self.residuals = numpy.hstack(resid) |
---|
| 66 | N = len(self.residuals) |
---|
| 67 | self.degrees_of_freedom = N-k if N>k else 1 |
---|
| 68 | self.chisq = numpy.sum(self.residuals**2) |
---|
| 69 | return self.chisq |
---|
| 70 | |
---|
[4c718654] | 71 | class ParkFit(FitEngine): |
---|
[7705306] | 72 | """ |
---|
[aa36f96] | 73 | ParkFit performs the Fit.This class can be used as follow: |
---|
| 74 | #Do the fit Park |
---|
| 75 | create an engine: engine = ParkFit() |
---|
| 76 | Use data must be of type plottable |
---|
| 77 | Use a sans model |
---|
| 78 | |
---|
| 79 | Add data with a dictionnary of FitArrangeList where Uid is a key and data |
---|
| 80 | is saved in FitArrange object. |
---|
| 81 | engine.set_data(data,Uid) |
---|
| 82 | |
---|
| 83 | Set model parameter "M1"= model.name add {model.parameter.name:value}. |
---|
| 84 | |
---|
| 85 | :note: Set_param() if used must always preceded set_model() |
---|
| 86 | for the fit to be performed. |
---|
| 87 | engine.set_param( model,"M1", {'A':2,'B':4}) |
---|
| 88 | |
---|
[b2f25dc5] | 89 | Add model with a dictionnary of FitArrangeList{} where Uid is a key |
---|
| 90 | and model |
---|
[aa36f96] | 91 | is save in FitArrange object. |
---|
| 92 | engine.set_model(model,Uid) |
---|
| 93 | |
---|
| 94 | engine.fit return chisqr,[model.parameter 1,2,..],[[err1....][..err2...]] |
---|
| 95 | chisqr1, out1, cov1=engine.fit({model.parameter.name:value},qmin,qmax) |
---|
| 96 | |
---|
| 97 | :note: {model.parameter.name:value} is ignored in fit function since |
---|
[792db7d5] | 98 | the user should make sure to call set_param himself. |
---|
[aa36f96] | 99 | |
---|
[7705306] | 100 | """ |
---|
[916a15f] | 101 | def __init__(self): |
---|
[792db7d5] | 102 | """ |
---|
[aa36f96] | 103 | Creates a dictionary (self.fitArrangeList={})of FitArrange elements |
---|
| 104 | with Uid as keys |
---|
[792db7d5] | 105 | """ |
---|
[b2f25dc5] | 106 | FitEngine.__init__(self) |
---|
| 107 | self.fit_arrange_dict = {} |
---|
| 108 | self.param_list = [] |
---|
[37d9521] | 109 | |
---|
[dfd3577] | 110 | def create_assembly(self, curr_thread): |
---|
[7705306] | 111 | """ |
---|
[b2f25dc5] | 112 | Extract sansmodel and sansdata from |
---|
| 113 | self.FitArrangelist ={Uid:FitArrange} |
---|
| 114 | Create parkmodel and park data ,form a list couple of parkmodel |
---|
| 115 | and parkdata |
---|
[792db7d5] | 116 | create an assembly self.problem= park.Assembly([(parkmodel,parkdata)]) |
---|
[7705306] | 117 | """ |
---|
[89f3b66] | 118 | mylist = [] |
---|
[b2f25dc5] | 119 | #listmodel = [] |
---|
| 120 | #i = 0 |
---|
[89f3b66] | 121 | fitproblems = [] |
---|
[b2f25dc5] | 122 | for fproblem in self.fit_arrange_dict.itervalues(): |
---|
[89f3b66] | 123 | if fproblem.get_to_fit() == 1: |
---|
[a9e04aa] | 124 | fitproblems.append(fproblem) |
---|
[89f3b66] | 125 | if len(fitproblems) == 0: |
---|
[a9e04aa] | 126 | raise RuntimeError, "No Assembly scheduled for Park fitting." |
---|
| 127 | return |
---|
| 128 | for item in fitproblems: |
---|
| 129 | parkmodel = item.get_model() |
---|
[9e85792] | 130 | for p in parkmodel.parameterset: |
---|
[fe886ee] | 131 | ## does not allow status change for constraint parameters |
---|
[89f3b66] | 132 | if p.status != 'computed': |
---|
[b2f25dc5] | 133 | if p.get_name()in item.pars: |
---|
| 134 | ## make parameters selected for |
---|
| 135 | #fit will be between boundaries |
---|
[89f3b66] | 136 | p.set(p.range) |
---|
[aed7c57] | 137 | else: |
---|
[89f3b66] | 138 | p.status = 'fixed' |
---|
[b2f25dc5] | 139 | data_list = item.get_data() |
---|
| 140 | parkdata = data_list |
---|
[89f3b66] | 141 | fitness = (parkmodel, parkdata) |
---|
[ca6d914] | 142 | mylist.append(fitness) |
---|
[dfd3577] | 143 | self.problem = MyAssembly(models=mylist, curr_thread=curr_thread) |
---|
[126a761] | 144 | |
---|
[dfd3577] | 145 | |
---|
| 146 | |
---|
[89f3b66] | 147 | def fit(self, q=None, handler=None, curr_thread=None): |
---|
[7705306] | 148 | """ |
---|
[aa36f96] | 149 | Performs fit with park.fit module.It can perform fit with one model |
---|
| 150 | and a set of data, more than two fit of one model and sets of data or |
---|
[b2f25dc5] | 151 | fit with more than two model associated with their set of data and |
---|
| 152 | constraints |
---|
[aa36f96] | 153 | |
---|
[b2f25dc5] | 154 | :param pars: Dictionary of parameter names for the model and their |
---|
| 155 | values. |
---|
[aa36f96] | 156 | :param qmin: The minimum value of data's range to be fit |
---|
| 157 | :param qmax: The maximum value of data's range to be fit |
---|
| 158 | |
---|
[b2f25dc5] | 159 | :note: all parameter are ignored most of the time.Are just there |
---|
| 160 | to keep ScipyFit and ParkFit interface the same. |
---|
[aa36f96] | 161 | |
---|
| 162 | :return: result.fitness Value of the goodness of fit metric |
---|
[b2f25dc5] | 163 | :return: result.pvec list of parameter with the best value |
---|
| 164 | found during fitting |
---|
[aa36f96] | 165 | :return: result.cov Covariance matrix |
---|
| 166 | |
---|
[7705306] | 167 | """ |
---|
[dfd3577] | 168 | self.create_assembly(curr_thread=curr_thread) |
---|
[cf3b781] | 169 | localfit = FitSimplex() |
---|
| 170 | localfit.ftol = 1e-8 |
---|
[681f0dc] | 171 | |
---|
[916a15f] | 172 | # See `park.fitresult.FitHandler` for details. |
---|
[9c648c7] | 173 | fitter = FitMC(localfit=localfit, start_points=1) |
---|
[681f0dc] | 174 | if handler == None: |
---|
[89f3b66] | 175 | handler = fitresult.ConsoleUpdate(improvement_delta=0.1) |
---|
[dfd3577] | 176 | result = fit.fit(self.problem, fitter=fitter, handler=handler) |
---|
[8296ff5] | 177 | self.problem.all_results(result) |
---|
[89f3b66] | 178 | if result != None: |
---|
| 179 | if q != None: |
---|
[fd6b789] | 180 | q.put(result) |
---|
| 181 | return q |
---|
[48882d1] | 182 | return result |
---|
[ee5b04c] | 183 | else: |
---|
| 184 | raise ValueError, "SVD did not converge" |
---|
[aa36f96] | 185 | |
---|