1 | import logging, sys |
---|
2 | import park,numpy,math, copy |
---|
3 | |
---|
4 | class SansParameter(park.Parameter): |
---|
5 | """ |
---|
6 | SANS model parameters for use in the PARK fitting service. |
---|
7 | The parameter attribute value is redirected to the underlying |
---|
8 | parameter value in the SANS model. |
---|
9 | """ |
---|
10 | def __init__(self, name, model): |
---|
11 | """ |
---|
12 | @param name: the name of the model parameter |
---|
13 | @param model: the sans model to wrap as a park model |
---|
14 | """ |
---|
15 | self._model, self._name = model,name |
---|
16 | #set the value for the parameter of the given name |
---|
17 | self.set(model.getParam(name)) |
---|
18 | |
---|
19 | def _getvalue(self): |
---|
20 | """ |
---|
21 | override the _getvalue of park parameter |
---|
22 | @return value the parameter associates with self.name |
---|
23 | """ |
---|
24 | return self._model.getParam(self.name) |
---|
25 | |
---|
26 | def _setvalue(self,value): |
---|
27 | """ |
---|
28 | override the _setvalue pf park parameter |
---|
29 | @param value: the value to set on a given parameter |
---|
30 | """ |
---|
31 | self._model.setParam(self.name, value) |
---|
32 | |
---|
33 | value = property(_getvalue,_setvalue) |
---|
34 | |
---|
35 | def _getrange(self): |
---|
36 | """ |
---|
37 | Override _getrange of park parameter |
---|
38 | return the range of parameter |
---|
39 | """ |
---|
40 | if not self.name in self._model.getDispParamList(): |
---|
41 | lo,hi = self._model.details[self.name][1:] |
---|
42 | if lo is None: lo = -numpy.inf |
---|
43 | if hi is None: hi = numpy.inf |
---|
44 | else: |
---|
45 | lo= -numpy.inf |
---|
46 | hi= numpy.inf |
---|
47 | if lo >= hi: |
---|
48 | raise ValueError,"wrong fit range for parameters" |
---|
49 | |
---|
50 | return lo,hi |
---|
51 | |
---|
52 | def _setrange(self,r): |
---|
53 | """ |
---|
54 | override _setrange of park parameter |
---|
55 | @param r: the value of the range to set |
---|
56 | """ |
---|
57 | self._model.details[self.name][1:] = r |
---|
58 | range = property(_getrange,_setrange) |
---|
59 | |
---|
60 | class Model(park.Model): |
---|
61 | """ |
---|
62 | PARK wrapper for SANS models. |
---|
63 | """ |
---|
64 | def __init__(self, sans_model, **kw): |
---|
65 | """ |
---|
66 | @param sans_model: the sans model to wrap using park interface |
---|
67 | """ |
---|
68 | park.Model.__init__(self, **kw) |
---|
69 | self.model = sans_model |
---|
70 | self.name = sans_model.name |
---|
71 | #list of parameters names |
---|
72 | self.sansp = sans_model.getParamList() |
---|
73 | #list of park parameter |
---|
74 | self.parkp = [SansParameter(p,sans_model) for p in self.sansp] |
---|
75 | #list of parameterset |
---|
76 | self.parameterset = park.ParameterSet(sans_model.name,pars=self.parkp) |
---|
77 | self.pars=[] |
---|
78 | |
---|
79 | |
---|
80 | def getParams(self,fitparams): |
---|
81 | """ |
---|
82 | return a list of value of paramter to fit |
---|
83 | @param fitparams: list of paramaters name to fit |
---|
84 | """ |
---|
85 | list=[] |
---|
86 | self.pars=[] |
---|
87 | self.pars=fitparams |
---|
88 | for item in fitparams: |
---|
89 | for element in self.parkp: |
---|
90 | if element.name ==str(item): |
---|
91 | list.append(element.value) |
---|
92 | return list |
---|
93 | |
---|
94 | |
---|
95 | def setParams(self,paramlist, params): |
---|
96 | """ |
---|
97 | Set value for parameters to fit |
---|
98 | @param params: list of value for parameters to fit |
---|
99 | """ |
---|
100 | try: |
---|
101 | for i in range(len(self.parkp)): |
---|
102 | for j in range(len(paramlist)): |
---|
103 | if self.parkp[i].name==paramlist[j]: |
---|
104 | self.parkp[i].value = params[j] |
---|
105 | self.model.setParam(self.parkp[i].name,params[j]) |
---|
106 | except: |
---|
107 | raise |
---|
108 | |
---|
109 | def eval(self,x): |
---|
110 | """ |
---|
111 | override eval method of park model. |
---|
112 | @param x: the x value used to compute a function |
---|
113 | """ |
---|
114 | try: |
---|
115 | return self.model.evalDistribution(x) |
---|
116 | except: |
---|
117 | raise |
---|
118 | |
---|
119 | |
---|
120 | class FitData1D(object): |
---|
121 | """ Wrapper class for SANS data """ |
---|
122 | def __init__(self,sans_data1d, smearer=None): |
---|
123 | """ |
---|
124 | Data can be initital with a data (sans plottable) |
---|
125 | or with vectors. |
---|
126 | |
---|
127 | self.smearer is an object of class QSmearer or SlitSmearer |
---|
128 | that will smear the theory data (slit smearing or resolution |
---|
129 | smearing) when set. |
---|
130 | |
---|
131 | The proper way to set the smearing object would be to |
---|
132 | do the following: |
---|
133 | |
---|
134 | from DataLoader.qsmearing import smear_selection |
---|
135 | fitdata1d = FitData1D(some_data) |
---|
136 | fitdata1d.smearer = smear_selection(some_data) |
---|
137 | |
---|
138 | Note that some_data _HAS_ to be of class DataLoader.data_info.Data1D |
---|
139 | |
---|
140 | Setting it back to None will turn smearing off. |
---|
141 | |
---|
142 | """ |
---|
143 | |
---|
144 | self.smearer = smearer |
---|
145 | |
---|
146 | # Initialize from Data1D object |
---|
147 | self.data=sans_data1d |
---|
148 | self.x= numpy.array(sans_data1d.x) |
---|
149 | self.y= numpy.array(sans_data1d.y) |
---|
150 | self.dx= sans_data1d.dx |
---|
151 | if sans_data1d.dy ==None or sans_data1d.dy==[]: |
---|
152 | self.dy= numpy.zeros(len(y)) |
---|
153 | else: |
---|
154 | self.dy= numpy.asarray(sans_data1d.dy) |
---|
155 | |
---|
156 | # For fitting purposes, replace zero errors by 1 |
---|
157 | #TODO: check validity for the rare case where only |
---|
158 | # a few points have zero errors |
---|
159 | self.dy[self.dy==0]=1 |
---|
160 | |
---|
161 | ## Min Q-value |
---|
162 | #Skip the Q=0 point, especially when y(q=0)=None at x[0]. |
---|
163 | if min (self.data.x) ==0.0 and self.data.x[0]==0 and not numpy.isfinite(self.data.y[0]): |
---|
164 | self.qmin = min(self.data.x[self.data.x!=0]) |
---|
165 | else: |
---|
166 | self.qmin= min (self.data.x) |
---|
167 | ## Max Q-value |
---|
168 | self.qmax= max (self.data.x) |
---|
169 | |
---|
170 | # Range used for input to smearing |
---|
171 | self._qmin_unsmeared = self.qmin |
---|
172 | self._qmax_unsmeared = self.qmax |
---|
173 | # Identify the bin range for the unsmeared and smeared spaces |
---|
174 | self.idx = (self.x>=self.qmin) & (self.x <= self.qmax) |
---|
175 | self.idx_unsmeared = (self.x>=self._qmin_unsmeared) & (self.x <= self._qmax_unsmeared) |
---|
176 | |
---|
177 | |
---|
178 | |
---|
179 | def setFitRange(self,qmin=None,qmax=None): |
---|
180 | """ to set the fit range""" |
---|
181 | # Skip Q=0 point, (especially for y(q=0)=None at x[0]). |
---|
182 | #ToDo: Fix this. |
---|
183 | if qmin==0.0 and not numpy.isfinite(self.data.y[qmin]): |
---|
184 | self.qmin = min(self.data.x[self.data.x!=0]) |
---|
185 | elif qmin!=None: |
---|
186 | self.qmin = qmin |
---|
187 | |
---|
188 | if qmax !=None: |
---|
189 | self.qmax = qmax |
---|
190 | |
---|
191 | # Range used for input to smearing |
---|
192 | self._qmin_unsmeared = self.qmin |
---|
193 | self._qmax_unsmeared = self.qmax |
---|
194 | |
---|
195 | # Determine the range needed in unsmeared-Q to cover |
---|
196 | # the smeared Q range |
---|
197 | #TODO: use the smearing matrix to determine which |
---|
198 | # bin range to use |
---|
199 | if self.smearer.__class__.__name__ == 'SlitSmearer': |
---|
200 | self._qmin_unsmeared = min(self.data.x) |
---|
201 | self._qmax_unsmeared = max(self.data.x) |
---|
202 | elif self.smearer.__class__.__name__ == 'QSmearer': |
---|
203 | # Take 3 sigmas as the offset between smeared and unsmeared space |
---|
204 | try: |
---|
205 | offset = 3.0*max(self.smearer.width) |
---|
206 | self._qmin_unsmeared = max([min(self.data.x), self.qmin-offset]) |
---|
207 | self._qmax_unsmeared = min([max(self.data.x), self.qmax+offset]) |
---|
208 | except: |
---|
209 | logging.error("FitData1D.setFitRange: %s" % sys.exc_value) |
---|
210 | # Identify the bin range for the unsmeared and smeared spaces |
---|
211 | self.idx = (self.x>=self.qmin) & (self.x <= self.qmax) |
---|
212 | self.idx_unsmeared = (self.x>=self._qmin_unsmeared) & (self.x <= self._qmax_unsmeared) |
---|
213 | |
---|
214 | |
---|
215 | def getFitRange(self): |
---|
216 | """ |
---|
217 | @return the range of data.x to fit |
---|
218 | """ |
---|
219 | return self.qmin, self.qmax |
---|
220 | |
---|
221 | def residuals(self, fn): |
---|
222 | """ |
---|
223 | Compute residuals. |
---|
224 | |
---|
225 | If self.smearer has been set, use if to smear |
---|
226 | the data before computing chi squared. |
---|
227 | |
---|
228 | @param fn: function that return model value |
---|
229 | @return residuals |
---|
230 | """ |
---|
231 | # Compute theory data f(x) |
---|
232 | fx= numpy.zeros(len(self.x)) |
---|
233 | _first_bin = None |
---|
234 | _last_bin = None |
---|
235 | |
---|
236 | fx[self.idx_unsmeared] = fn(self.x[self.idx_unsmeared]) |
---|
237 | |
---|
238 | |
---|
239 | for i_x in range(len(self.x)): |
---|
240 | if self.idx_unsmeared[i_x]==True: |
---|
241 | # Identify first and last bin |
---|
242 | #TODO: refactor this to pass q-values to the smearer |
---|
243 | # and let it figure out which bin range to use |
---|
244 | if _first_bin is None: |
---|
245 | _first_bin = i_x |
---|
246 | else: |
---|
247 | _last_bin = i_x |
---|
248 | |
---|
249 | ## Smear theory data |
---|
250 | if self.smearer is not None: |
---|
251 | fx = self.smearer(fx, _first_bin, _last_bin) |
---|
252 | |
---|
253 | ## Sanity check |
---|
254 | if numpy.size(self.dy)!= numpy.size(fx): |
---|
255 | raise RuntimeError, "FitData1D: invalid error array %d <> %d" % (numpy.shape(self.dy), |
---|
256 | numpy.size(fx)) |
---|
257 | |
---|
258 | return (self.y[self.idx]-fx[self.idx])/self.dy[self.idx] |
---|
259 | |
---|
260 | |
---|
261 | |
---|
262 | def residuals_deriv(self, model, pars=[]): |
---|
263 | """ |
---|
264 | @return residuals derivatives . |
---|
265 | @note: in this case just return empty array |
---|
266 | """ |
---|
267 | return [] |
---|
268 | |
---|
269 | |
---|
270 | class FitData2D(object): |
---|
271 | """ Wrapper class for SANS data """ |
---|
272 | def __init__(self,sans_data2d): |
---|
273 | """ |
---|
274 | Data can be initital with a data (sans plottable) |
---|
275 | or with vectors. |
---|
276 | """ |
---|
277 | self.data=sans_data2d |
---|
278 | self.image = sans_data2d.data |
---|
279 | self.err_image = sans_data2d.err_data |
---|
280 | self.x_bins_array= numpy.reshape(sans_data2d.x_bins, |
---|
281 | [len(sans_data2d.x_bins),1]) |
---|
282 | self.y_bins_array = numpy.reshape(sans_data2d.y_bins, |
---|
283 | [1,len(sans_data2d.y_bins)]) |
---|
284 | |
---|
285 | x = max(self.data.xmin, self.data.xmax) |
---|
286 | y = max(self.data.ymin, self.data.ymax) |
---|
287 | |
---|
288 | ## fitting range |
---|
289 | self.qmin = 1e-16 |
---|
290 | self.qmax = math.sqrt(x*x +y*y) |
---|
291 | ## new error image for fitting purpose |
---|
292 | if self.err_image== None or self.err_image ==[]: |
---|
293 | self.res_err_image= numpy.zeros(len(self.y_bins),len(self.x_bins)) |
---|
294 | else: |
---|
295 | self.res_err_image = copy.deepcopy(self.err_image) |
---|
296 | self.res_err_image[self.err_image==0]=1 |
---|
297 | |
---|
298 | self.radius= numpy.sqrt(self.x_bins_array**2 + self.y_bins_array**2) |
---|
299 | self.index_model = (self.qmin <= self.radius)&(self.radius<= self.qmax) |
---|
300 | |
---|
301 | |
---|
302 | def setFitRange(self,qmin=None,qmax=None): |
---|
303 | """ to set the fit range""" |
---|
304 | if qmin==0.0: |
---|
305 | self.qmin = 1e-16 |
---|
306 | elif qmin!=None: |
---|
307 | self.qmin = qmin |
---|
308 | if qmax!=None: |
---|
309 | self.qmax= qmax |
---|
310 | |
---|
311 | |
---|
312 | def getFitRange(self): |
---|
313 | """ |
---|
314 | @return the range of data.x to fit |
---|
315 | """ |
---|
316 | return self.qmin, self.qmax |
---|
317 | |
---|
318 | def residuals(self, fn): |
---|
319 | |
---|
320 | res=self.index_model*(self.image - fn([self.x_bins_array, |
---|
321 | self.y_bins_array]))/self.res_err_image |
---|
322 | return res.ravel() |
---|
323 | |
---|
324 | |
---|
325 | def residuals_deriv(self, model, pars=[]): |
---|
326 | """ |
---|
327 | @return residuals derivatives . |
---|
328 | @note: in this case just return empty array |
---|
329 | """ |
---|
330 | return [] |
---|
331 | |
---|
332 | class FitAbort(Exception): |
---|
333 | """ |
---|
334 | Exception raise to stop the fit |
---|
335 | """ |
---|
336 | print"Creating fit abort Exception" |
---|
337 | |
---|
338 | |
---|
339 | class SansAssembly: |
---|
340 | """ |
---|
341 | Sans Assembly class a class wrapper to be call in optimizer.leastsq method |
---|
342 | """ |
---|
343 | def __init__(self,paramlist,Model=None , Data=None, curr_thread= None): |
---|
344 | """ |
---|
345 | @param Model: the model wrapper fro sans -model |
---|
346 | @param Data: the data wrapper for sans data |
---|
347 | """ |
---|
348 | self.model = Model |
---|
349 | self.data = Data |
---|
350 | self.paramlist=paramlist |
---|
351 | self.curr_thread= curr_thread |
---|
352 | self.res=[] |
---|
353 | self.func_name="Functor" |
---|
354 | def chisq(self, params): |
---|
355 | """ |
---|
356 | Calculates chi^2 |
---|
357 | @param params: list of parameter values |
---|
358 | @return: chi^2 |
---|
359 | """ |
---|
360 | sum = 0 |
---|
361 | for item in self.res: |
---|
362 | sum += item*item |
---|
363 | if len(self.res)==0: |
---|
364 | return None |
---|
365 | return sum/ len(self.res) |
---|
366 | |
---|
367 | def __call__(self,params): |
---|
368 | """ |
---|
369 | Compute residuals |
---|
370 | @param params: value of parameters to fit |
---|
371 | """ |
---|
372 | #import thread |
---|
373 | self.model.setParams(self.paramlist,params) |
---|
374 | self.res= self.data.residuals(self.model.eval) |
---|
375 | #if self.curr_thread != None : |
---|
376 | # try: |
---|
377 | # self.curr_thread.isquit() |
---|
378 | # except: |
---|
379 | # raise FitAbort,"stop leastsqr optimizer" |
---|
380 | return self.res |
---|
381 | |
---|
382 | class FitEngine: |
---|
383 | def __init__(self): |
---|
384 | """ |
---|
385 | Base class for scipy and park fit engine |
---|
386 | """ |
---|
387 | #List of parameter names to fit |
---|
388 | self.paramList=[] |
---|
389 | #Dictionnary of fitArrange element (fit problems) |
---|
390 | self.fitArrangeDict={} |
---|
391 | |
---|
392 | def _concatenateData(self, listdata=[]): |
---|
393 | """ |
---|
394 | _concatenateData method concatenates each fields of all data contains ins listdata. |
---|
395 | @param listdata: list of data |
---|
396 | @return Data: Data is wrapper class for sans plottable. it is created with all parameters |
---|
397 | of data concatenanted |
---|
398 | @raise: if listdata is empty will return None |
---|
399 | @raise: if data in listdata don't contain dy field ,will create an error |
---|
400 | during fitting |
---|
401 | """ |
---|
402 | #TODO: we have to refactor the way we handle data. |
---|
403 | # We should move away from plottables and move towards the Data1D objects |
---|
404 | # defined in DataLoader. Data1D allows data manipulations, which should be |
---|
405 | # used to concatenate. |
---|
406 | # In the meantime we should switch off the concatenation. |
---|
407 | #if len(listdata)>1: |
---|
408 | # raise RuntimeError, "FitEngine._concatenateData: Multiple data files is not currently supported" |
---|
409 | #return listdata[0] |
---|
410 | |
---|
411 | if listdata==[]: |
---|
412 | raise ValueError, " data list missing" |
---|
413 | else: |
---|
414 | xtemp=[] |
---|
415 | ytemp=[] |
---|
416 | dytemp=[] |
---|
417 | self.mini=None |
---|
418 | self.maxi=None |
---|
419 | |
---|
420 | for item in listdata: |
---|
421 | data=item.data |
---|
422 | mini,maxi=data.getFitRange() |
---|
423 | if self.mini==None and self.maxi==None: |
---|
424 | self.mini=mini |
---|
425 | self.maxi=maxi |
---|
426 | else: |
---|
427 | if mini < self.mini: |
---|
428 | self.mini=mini |
---|
429 | if self.maxi < maxi: |
---|
430 | self.maxi=maxi |
---|
431 | |
---|
432 | |
---|
433 | for i in range(len(data.x)): |
---|
434 | xtemp.append(data.x[i]) |
---|
435 | ytemp.append(data.y[i]) |
---|
436 | if data.dy is not None and len(data.dy)==len(data.y): |
---|
437 | dytemp.append(data.dy[i]) |
---|
438 | else: |
---|
439 | raise RuntimeError, "Fit._concatenateData: y-errors missing" |
---|
440 | data= Data(x=xtemp,y=ytemp,dy=dytemp) |
---|
441 | data.setFitRange(self.mini, self.maxi) |
---|
442 | return data |
---|
443 | |
---|
444 | |
---|
445 | def set_model(self,model,Uid,pars=[]): |
---|
446 | """ |
---|
447 | set a model on a given uid in the fit engine. |
---|
448 | @param model: the model to fit |
---|
449 | @param Uid :is the key of the fitArrange dictionnary where model is saved as a value |
---|
450 | @param pars: the list of parameters to fit |
---|
451 | @note : pars must contains only name of existing model's paramaters |
---|
452 | """ |
---|
453 | if len(pars) >0: |
---|
454 | if model==None: |
---|
455 | raise ValueError, "AbstractFitEngine: Specify parameters to fit" |
---|
456 | else: |
---|
457 | temp=[] |
---|
458 | for item in pars: |
---|
459 | if item in model.model.getParamList(): |
---|
460 | temp.append(item) |
---|
461 | self.paramList.append(item) |
---|
462 | else: |
---|
463 | raise ValueError,"wrong paramter %s used to set model %s. Choose\ |
---|
464 | parameter name within %s"%(item, model.model.name,str(model.model.getParamList())) |
---|
465 | return |
---|
466 | #A fitArrange is already created but contains dList only at Uid |
---|
467 | if self.fitArrangeDict.has_key(Uid): |
---|
468 | self.fitArrangeDict[Uid].set_model(model) |
---|
469 | self.fitArrangeDict[Uid].pars= pars |
---|
470 | else: |
---|
471 | #no fitArrange object has been create with this Uid |
---|
472 | fitproblem = FitArrange() |
---|
473 | fitproblem.set_model(model) |
---|
474 | fitproblem.pars= pars |
---|
475 | self.fitArrangeDict[Uid] = fitproblem |
---|
476 | |
---|
477 | else: |
---|
478 | raise ValueError, "park_integration:missing parameters" |
---|
479 | |
---|
480 | def set_data(self,data,Uid,smearer=None,qmin=None,qmax=None): |
---|
481 | """ Receives plottable, creates a list of data to fit,set data |
---|
482 | in a FitArrange object and adds that object in a dictionary |
---|
483 | with key Uid. |
---|
484 | @param data: data added |
---|
485 | @param Uid: unique key corresponding to a fitArrange object with data |
---|
486 | """ |
---|
487 | if data.__class__.__name__=='Data2D': |
---|
488 | fitdata=FitData2D(data) |
---|
489 | else: |
---|
490 | fitdata=FitData1D(data, smearer) |
---|
491 | |
---|
492 | fitdata.setFitRange(qmin=qmin,qmax=qmax) |
---|
493 | #A fitArrange is already created but contains model only at Uid |
---|
494 | if self.fitArrangeDict.has_key(Uid): |
---|
495 | self.fitArrangeDict[Uid].add_data(fitdata) |
---|
496 | else: |
---|
497 | #no fitArrange object has been create with this Uid |
---|
498 | fitproblem= FitArrange() |
---|
499 | fitproblem.add_data(fitdata) |
---|
500 | self.fitArrangeDict[Uid]=fitproblem |
---|
501 | |
---|
502 | def get_model(self,Uid): |
---|
503 | """ |
---|
504 | @param Uid: Uid is key in the dictionary containing the model to return |
---|
505 | @return a model at this uid or None if no FitArrange element was created |
---|
506 | with this Uid |
---|
507 | """ |
---|
508 | if self.fitArrangeDict.has_key(Uid): |
---|
509 | return self.fitArrangeDict[Uid].get_model() |
---|
510 | else: |
---|
511 | return None |
---|
512 | |
---|
513 | def remove_Fit_Problem(self,Uid): |
---|
514 | """remove fitarrange in Uid""" |
---|
515 | if self.fitArrangeDict.has_key(Uid): |
---|
516 | del self.fitArrangeDict[Uid] |
---|
517 | |
---|
518 | def select_problem_for_fit(self,Uid,value): |
---|
519 | """ |
---|
520 | select a couple of model and data at the Uid position in dictionary |
---|
521 | and set in self.selected value to value |
---|
522 | @param value: the value to allow fitting. can only have the value one or zero |
---|
523 | """ |
---|
524 | if self.fitArrangeDict.has_key(Uid): |
---|
525 | self.fitArrangeDict[Uid].set_to_fit( value) |
---|
526 | |
---|
527 | |
---|
528 | def get_problem_to_fit(self,Uid): |
---|
529 | """ |
---|
530 | return the self.selected value of the fit problem of Uid |
---|
531 | @param Uid: the Uid of the problem |
---|
532 | """ |
---|
533 | if self.fitArrangeDict.has_key(Uid): |
---|
534 | self.fitArrangeDict[Uid].get_to_fit() |
---|
535 | |
---|
536 | class FitArrange: |
---|
537 | def __init__(self): |
---|
538 | """ |
---|
539 | Class FitArrange contains a set of data for a given model |
---|
540 | to perform the Fit.FitArrange must contain exactly one model |
---|
541 | and at least one data for the fit to be performed. |
---|
542 | model: the model selected by the user |
---|
543 | Ldata: a list of data what the user wants to fit |
---|
544 | |
---|
545 | """ |
---|
546 | self.model = None |
---|
547 | self.dList =[] |
---|
548 | self.pars=[] |
---|
549 | #self.selected is zero when this fit problem is not schedule to fit |
---|
550 | #self.selected is 1 when schedule to fit |
---|
551 | self.selected = 0 |
---|
552 | |
---|
553 | def set_model(self,model): |
---|
554 | """ |
---|
555 | set_model save a copy of the model |
---|
556 | @param model: the model being set |
---|
557 | """ |
---|
558 | self.model = model |
---|
559 | |
---|
560 | def add_data(self,data): |
---|
561 | """ |
---|
562 | add_data fill a self.dList with data to fit |
---|
563 | @param data: Data to add in the list |
---|
564 | """ |
---|
565 | if not data in self.dList: |
---|
566 | self.dList.append(data) |
---|
567 | |
---|
568 | def get_model(self): |
---|
569 | """ @return: saved model """ |
---|
570 | return self.model |
---|
571 | |
---|
572 | def get_data(self): |
---|
573 | """ @return: list of data dList""" |
---|
574 | #return self.dList |
---|
575 | return self.dList[0] |
---|
576 | |
---|
577 | def remove_data(self,data): |
---|
578 | """ |
---|
579 | Remove one element from the list |
---|
580 | @param data: Data to remove from dList |
---|
581 | """ |
---|
582 | if data in self.dList: |
---|
583 | self.dList.remove(data) |
---|
584 | def set_to_fit (self, value=0): |
---|
585 | """ |
---|
586 | set self.selected to 0 or 1 for other values raise an exception |
---|
587 | @param value: integer between 0 or 1 |
---|
588 | """ |
---|
589 | self.selected= value |
---|
590 | |
---|
591 | def get_to_fit(self): |
---|
592 | """ |
---|
593 | @return self.selected value |
---|
594 | """ |
---|
595 | return self.selected |
---|