1 | #__docformat__ = "restructuredtext en" |
---|
2 | # ******NOTICE*************** |
---|
3 | # from optimize.py module by Travis E. Oliphant |
---|
4 | # |
---|
5 | # You may copy and use this module as you see fit with no |
---|
6 | # guarantee implied provided you keep this notice in all copies. |
---|
7 | # *****END NOTICE************ |
---|
8 | # |
---|
9 | # Modified by Paul Kienzle to support bounded minimization |
---|
10 | """ |
---|
11 | Downhill simplex optimizer. |
---|
12 | """ |
---|
13 | |
---|
14 | __all__ = ['simplex'] |
---|
15 | |
---|
16 | __docformat__ = "restructuredtext en" |
---|
17 | |
---|
18 | import numpy |
---|
19 | __version__="0.7" |
---|
20 | |
---|
21 | def wrap_function(function, bounds): |
---|
22 | ncalls = [0] |
---|
23 | if bounds is not None: |
---|
24 | lo, hi = [numpy.asarray(v) for v in bounds] |
---|
25 | def function_wrapper(x): |
---|
26 | ncalls[0] += 1 |
---|
27 | if numpy.any((x<lo)|(x>hi)): |
---|
28 | return numpy.inf |
---|
29 | else: |
---|
30 | return function(x) |
---|
31 | else: |
---|
32 | def function_wrapper(x): |
---|
33 | ncalls[0] += 1 |
---|
34 | return function(x) |
---|
35 | return ncalls, function_wrapper |
---|
36 | |
---|
37 | class Result: |
---|
38 | """ |
---|
39 | Results from the fit. |
---|
40 | |
---|
41 | x : ndarray |
---|
42 | Best parameter set |
---|
43 | fx : float |
---|
44 | Best value |
---|
45 | iters : int |
---|
46 | Number of iterations |
---|
47 | calls : int |
---|
48 | Number of function calls |
---|
49 | success : boolean |
---|
50 | True if the fit completed successful, false if terminated early |
---|
51 | because of too many iterations. |
---|
52 | """ |
---|
53 | def __init__(self, x, fx, iters, calls, status): |
---|
54 | self.x,self.fx,self.iters,self.calls=x,fx,iters,calls |
---|
55 | self.status = status |
---|
56 | def __str__(self): |
---|
57 | return "Minimum %g at %s after %d calls"%(self.fx,self.x,self.calls) |
---|
58 | |
---|
59 | def dont_abort(): return False |
---|
60 | |
---|
61 | def simplex(f, x0=None, bounds=None, radius=0.05, |
---|
62 | xtol=1e-4, ftol=1e-4, maxiter=None, |
---|
63 | update_handler=None, abort_test=dont_abort): |
---|
64 | """ |
---|
65 | Minimize a function using Nelder-Mead downhill simplex algorithm. |
---|
66 | |
---|
67 | This optimizer is also known as Amoeba (from Numerical Recipes) and |
---|
68 | the Nealder-Mead simplex algorithm. This is not the simplex algorithm |
---|
69 | for solving constrained linear systems. |
---|
70 | |
---|
71 | Downhill simplex is a robust derivative free algorithm for finding |
---|
72 | minima. It proceeds by choosing a set of points (the simplex) forming |
---|
73 | an n-dimensional triangle, and transforming that triangle so that the |
---|
74 | worst vertex is improved, either by stretching, shrinking or reflecting |
---|
75 | it about the center of the triangle. This algorithm is not known for |
---|
76 | its speed, but for its simplicity and robustness, and is a good algorithm |
---|
77 | to start your problem with. |
---|
78 | |
---|
79 | *Parameters*: |
---|
80 | |
---|
81 | f : callable f(x,*args) |
---|
82 | The objective function to be minimized. |
---|
83 | x0 : ndarray |
---|
84 | Initial guess. |
---|
85 | bounds : (ndarray,ndarray) or None |
---|
86 | Bounds on the parameter values for the function. |
---|
87 | radius: float |
---|
88 | Size of the initial simplex. For bounded parameters (those |
---|
89 | which have finite lower and upper bounds), radius is clipped |
---|
90 | to a value in (0,0.5] representing the portion of the |
---|
91 | range to use as the size of the initial simplex. |
---|
92 | |
---|
93 | *Returns*: Result (`park.simplex.Result`) |
---|
94 | |
---|
95 | x : ndarray |
---|
96 | Parameter that minimizes function. |
---|
97 | fx : float |
---|
98 | Value of function at minimum: ``fopt = func(xopt)``. |
---|
99 | iters : int |
---|
100 | Number of iterations performed. |
---|
101 | calls : int |
---|
102 | Number of function calls made. |
---|
103 | success : boolean |
---|
104 | True if fit completed successfully. |
---|
105 | |
---|
106 | *Other Parameters*: |
---|
107 | |
---|
108 | xtol : float |
---|
109 | Relative error in xopt acceptable for convergence. |
---|
110 | ftol : number |
---|
111 | Relative error in func(xopt) acceptable for convergence. |
---|
112 | maxiter : int=200*N |
---|
113 | Maximum number of iterations to perform. Defaults |
---|
114 | update_handler : callable |
---|
115 | Called after each iteration, as callback(xk,fxk), where xk |
---|
116 | is the current parameter vector and fxk is the function value. |
---|
117 | Returns True if the fit should continue. |
---|
118 | |
---|
119 | |
---|
120 | *Notes* |
---|
121 | |
---|
122 | Uses a Nelder-Mead simplex algorithm to find the minimum of |
---|
123 | function of one or more variables. |
---|
124 | |
---|
125 | """ |
---|
126 | fcalls, func = wrap_function(f, bounds) |
---|
127 | x0 = numpy.asfarray(x0).flatten() |
---|
128 | #print "x0",x0 |
---|
129 | N = len(x0) |
---|
130 | rank = len(x0.shape) |
---|
131 | if not -1 < rank < 2: |
---|
132 | raise ValueError, "Initial guess must be a scalar or rank-1 sequence." |
---|
133 | |
---|
134 | if maxiter is None: |
---|
135 | maxiter = N * 200 |
---|
136 | |
---|
137 | rho = 1; chi = 2; psi = 0.5; sigma = 0.5; |
---|
138 | |
---|
139 | if rank == 0: |
---|
140 | sim = numpy.zeros((N+1,), dtype=x0.dtype) |
---|
141 | else: |
---|
142 | sim = numpy.zeros((N+1,N), dtype=x0.dtype) |
---|
143 | fsim = numpy.zeros((N+1,), float) |
---|
144 | sim[0] = x0 |
---|
145 | fsim[0] = func(x0) |
---|
146 | |
---|
147 | # Metropolitan simplex: simplex has vertices at x0 and at |
---|
148 | # x0 + j*radius for each unit vector j. Radius is a percentage |
---|
149 | # change from the initial value, or just the radius if the initial |
---|
150 | # value is 0. For bounded problems, the radius is a percentage of |
---|
151 | # the bounded range in dimension j. |
---|
152 | val = x0*(1+radius) |
---|
153 | val[val == 0] = radius |
---|
154 | if bounds is not None: |
---|
155 | radius = numpy.clip(radius,0,0.5) |
---|
156 | lo,hi = [numpy.asarray(v) for v in bounds] |
---|
157 | |
---|
158 | # Keep the initial simplex inside the bounds |
---|
159 | x0[x0<lo] = lo[x0<lo] |
---|
160 | x0[x0>hi] = hi[x0>hi] |
---|
161 | bounded = ~numpy.isinf(lo) & ~numpy.isinf(hi) |
---|
162 | val[bounded] = x0[bounded] + (hi[bounded]-lo[bounded])*radius |
---|
163 | val[val<lo] = lo[val<lo] |
---|
164 | val[val>hi] = hi[val>hi] |
---|
165 | |
---|
166 | # If the initial point was at or beyond an upper bound, then bounds |
---|
167 | # projection will put x0 and x0+j*radius at the same point. We |
---|
168 | # need to detect these collisions and reverse the radius step |
---|
169 | # direction when such collisions occur. The only time the collision |
---|
170 | # can occur at the lower bound is when upper and lower bound are |
---|
171 | # identical. In that case, we are already done. |
---|
172 | collision = val==x0 |
---|
173 | if numpy.any(collision): |
---|
174 | reverse = x0*(1-radius) |
---|
175 | reverse[reverse==0] = -radius |
---|
176 | reverse[bounded] = x0[bounded] - (hi[bounded]-lo[bounded])*radius |
---|
177 | val[collision] = reverse[collision] |
---|
178 | |
---|
179 | # Make tolerance relative for bounded parameters |
---|
180 | tol = numpy.ones(x0.shape)*xtol |
---|
181 | tol[bounded] = (hi[bounded]-lo[bounded])*xtol |
---|
182 | xtol = tol |
---|
183 | |
---|
184 | # Compute values at the simplex vertices |
---|
185 | for k in range(0,N): |
---|
186 | y = x0+0 |
---|
187 | y[k] = val[k] |
---|
188 | sim[k+1] = y |
---|
189 | fsim[k+1] = func(y) |
---|
190 | |
---|
191 | #print sim |
---|
192 | ind = numpy.argsort(fsim) |
---|
193 | fsim = numpy.take(fsim,ind,0) |
---|
194 | # sort so sim[0,:] has the lowest function value |
---|
195 | sim = numpy.take(sim,ind,0) |
---|
196 | #print sim |
---|
197 | |
---|
198 | iterations = 1 |
---|
199 | while iterations < maxiter: |
---|
200 | if numpy.all(abs(sim[1:]-sim[0]) <= xtol) \ |
---|
201 | and max(abs(fsim[0]-fsim[1:])) <= ftol: |
---|
202 | #print abs(sim[1:]-sim[0]) |
---|
203 | break |
---|
204 | |
---|
205 | xbar = numpy.sum(sim[:-1],0) / N |
---|
206 | xr = (1+rho)*xbar - rho*sim[-1] |
---|
207 | #print "xbar" ,xbar,rho,sim[-1],N |
---|
208 | #break |
---|
209 | fxr = func(xr) |
---|
210 | doshrink = 0 |
---|
211 | |
---|
212 | if fxr < fsim[0]: |
---|
213 | xe = (1+rho*chi)*xbar - rho*chi*sim[-1] |
---|
214 | fxe = func(xe) |
---|
215 | |
---|
216 | if fxe < fxr: |
---|
217 | sim[-1] = xe |
---|
218 | fsim[-1] = fxe |
---|
219 | else: |
---|
220 | sim[-1] = xr |
---|
221 | fsim[-1] = fxr |
---|
222 | else: # fsim[0] <= fxr |
---|
223 | if fxr < fsim[-2]: |
---|
224 | sim[-1] = xr |
---|
225 | fsim[-1] = fxr |
---|
226 | else: # fxr >= fsim[-2] |
---|
227 | # Perform contraction |
---|
228 | if fxr < fsim[-1]: |
---|
229 | xc = (1+psi*rho)*xbar - psi*rho*sim[-1] |
---|
230 | fxc = func(xc) |
---|
231 | |
---|
232 | if fxc <= fxr: |
---|
233 | sim[-1] = xc |
---|
234 | fsim[-1] = fxc |
---|
235 | else: |
---|
236 | doshrink=1 |
---|
237 | else: |
---|
238 | # Perform an inside contraction |
---|
239 | xcc = (1-psi)*xbar + psi*sim[-1] |
---|
240 | fxcc = func(xcc) |
---|
241 | |
---|
242 | if fxcc < fsim[-1]: |
---|
243 | sim[-1] = xcc |
---|
244 | fsim[-1] = fxcc |
---|
245 | else: |
---|
246 | doshrink = 1 |
---|
247 | |
---|
248 | if doshrink: |
---|
249 | for j in xrange(1,N+1): |
---|
250 | sim[j] = sim[0] + sigma*(sim[j] - sim[0]) |
---|
251 | fsim[j] = func(sim[j]) |
---|
252 | |
---|
253 | ind = numpy.argsort(fsim) |
---|
254 | sim = numpy.take(sim,ind,0) |
---|
255 | fsim = numpy.take(fsim,ind,0) |
---|
256 | if update_handler is not None: |
---|
257 | update_handler(sim[0],fsim[0]) |
---|
258 | iterations += 1 |
---|
259 | if abort_test(): break |
---|
260 | |
---|
261 | status = 0 if iterations < maxiter else 1 |
---|
262 | res = Result(sim[0],fsim[0],iterations,fcalls[0], status) |
---|
263 | return res |
---|
264 | |
---|
265 | def main(): |
---|
266 | import time |
---|
267 | def rosen(x): # The Rosenbrock function |
---|
268 | return numpy.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0,axis=0) |
---|
269 | |
---|
270 | |
---|
271 | x0 = [0.8,1.2,0.7] |
---|
272 | print "Nelder-Mead Simplex" |
---|
273 | print "===================" |
---|
274 | start = time.time() |
---|
275 | x = simplex(rosen,x0) |
---|
276 | print x |
---|
277 | print "Time:",time.time() - start |
---|
278 | |
---|
279 | x0 = [0]*3 |
---|
280 | print "Nelder-Mead Simplex" |
---|
281 | print "===================" |
---|
282 | print "starting at zero" |
---|
283 | start = time.time() |
---|
284 | x = simplex(rosen,x0) |
---|
285 | print x |
---|
286 | print "Time:",time.time() - start |
---|
287 | |
---|
288 | x0 = [0.8,1.2,0.7] |
---|
289 | lo,hi = [0]*3, [1]*3 |
---|
290 | print "Bounded Nelder-Mead Simplex" |
---|
291 | print "===========================" |
---|
292 | start = time.time() |
---|
293 | x = simplex(rosen,x0,bounds=(lo,hi)) |
---|
294 | print x |
---|
295 | print "Time:",time.time() - start |
---|
296 | |
---|
297 | |
---|
298 | x0 = [0.8,1.2,0.7] |
---|
299 | lo,hi = [0.999]*3, [1.001]*3 |
---|
300 | print "Bounded Nelder-Mead Simplex" |
---|
301 | print "===========================" |
---|
302 | print "tight bounds" |
---|
303 | print "simplex is smaller than 1e-7 in every dimension, but you can't" |
---|
304 | print "see this without uncommenting the print statement simplex function" |
---|
305 | start = time.time() |
---|
306 | x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4) |
---|
307 | print x |
---|
308 | print "Time:",time.time() - start |
---|
309 | |
---|
310 | |
---|
311 | x0 = [0]*3 |
---|
312 | hi,lo = [-0.999]*3, [-1.001]*3 |
---|
313 | print "Bounded Nelder-Mead Simplex" |
---|
314 | print "===========================" |
---|
315 | print "tight bounds, x0=0 outside bounds from above" |
---|
316 | start = time.time() |
---|
317 | x = simplex(lambda x:rosen(-x),x0,bounds=(lo,hi),xtol=1e-4) |
---|
318 | print x |
---|
319 | print "Time:",time.time() - start |
---|
320 | |
---|
321 | |
---|
322 | x0 = [0.8,1.2,0.7] |
---|
323 | lo,hi = [-numpy.inf]*3, [numpy.inf]*3 |
---|
324 | print "Bounded Nelder-Mead Simplex" |
---|
325 | print "===========================" |
---|
326 | print "infinite bounds" |
---|
327 | start = time.time() |
---|
328 | x = simplex(rosen,x0,bounds=(lo,hi),xtol=1e-4) |
---|
329 | print x |
---|
330 | print "Time:",time.time() - start |
---|
331 | |
---|
332 | if __name__ == "__main__": |
---|
333 | main() |
---|