1 | """ |
---|
2 | Defines transformations between the a fit space and the parameter space. |
---|
3 | |
---|
4 | The parameter space maps a set of possibly bounded dimensions into a |
---|
5 | real-valued fitness:: |
---|
6 | |
---|
7 | f: [a,b]**n |-> R |
---|
8 | |
---|
9 | The fit space is constrained to map values in the unit box:: |
---|
10 | |
---|
11 | f': [0,1]**n |-> R |
---|
12 | |
---|
13 | Here we can define f' using the zero-one mapper:: |
---|
14 | |
---|
15 | f' = ZeroOneMapper(f,a,b) |
---|
16 | f'(v) = f(x) |
---|
17 | |
---|
18 | An asymptote function maps x to [0,1], preserving at least 12 digits of |
---|
19 | precision. |
---|
20 | |
---|
21 | Using this mapping, the optimizer can operate in a well known space |
---|
22 | independent of parameter precision. This allows the use of reasonable |
---|
23 | constants for items such as a step size and initial value. |
---|
24 | |
---|
25 | Note: we do not yet support fitness functions with analytic derivatives. |
---|
26 | Given df/dp and mapping function f'(v) = f(M(v)) then df'/dv = df/dM dM/dv. |
---|
27 | So the derivatives need to be multiplied by the derivative of the |
---|
28 | parameter mapper. Not difficult computationally, but the definition of |
---|
29 | the fitness function does not currently support this organization. |
---|
30 | """ |
---|
31 | |
---|
32 | |
---|
33 | class FitCobyla(LocalFit): |
---|
34 | """ |
---|
35 | Local minimizer using COBYLA, Constrained Optimization by Linear |
---|
36 | Approximation. |
---|
37 | |
---|
38 | COBYLA minimizes an objective function F(X) subject to M inequality |
---|
39 | constraints on X, where X is a vector of variables that has N components. |
---|
40 | The algorithm employs linear approximations to the objective and |
---|
41 | constraint functions, the approximations being formed by linear |
---|
42 | interpolation at N+1 points in the space of the variables. These |
---|
43 | interpolation points can be regarded as vertices of a simplex. The |
---|
44 | parameter rho controls the size of the simplex and it is reduced |
---|
45 | automatically from radius to xtol. For each RHO the subroutine tries |
---|
46 | to achieve a good vector of variables for the current size, and then |
---|
47 | RHO is reduced until the value xtol is reached. Therefore radius and |
---|
48 | xtol should be set to reasonable initial changes to and the required |
---|
49 | accuracy in the variables respectively, but this accuracy should be |
---|
50 | viewed as a subject for experimentation because it is not guaranteed. |
---|
51 | |
---|
52 | Basic bounds constraints are built into the interface. These bounds |
---|
53 | map the space into the n-D unit cube, so values values for radius |
---|
54 | and xtol should be chosen accordingly. Regardless of xtol, the |
---|
55 | fit is stopped after maxiter function evaluations. |
---|
56 | """ |
---|
57 | radius = 0.05 |
---|
58 | """Size of the initial simplex; this is a portion between 0 and 1""" |
---|
59 | xtol = 1e-4 |
---|
60 | """Stop when simplex vertices are within xtol of each other""" |
---|
61 | maxiter = 1000 |
---|
62 | def __call__(self): |
---|
63 | from scipy.optimize.cobyla import fmin_cobyla as cobyla |
---|
64 | |
---|
65 | class ArctanAsymptote(object): |
---|
66 | """ |
---|
67 | Arctan asymptote function for mapping (-inf,inf) to [0,1]. |
---|
68 | |
---|
69 | With all attributes constant, either the class or an instance can be used. |
---|
70 | |
---|
71 | An asymptote function is monotonically increasing and finite everywhere. |
---|
72 | Assuming the function is a at -inf and b at +inf, scale is 1/(b-a) and |
---|
73 | offset is a. Together with an inverse function, this allows us to |
---|
74 | transform between an infinite range and the range [0,1]. Semidefinite |
---|
75 | map to (-inf,0] and [0,inf). |
---|
76 | |
---|
77 | ArctanAsymptote is approximately linear in [-0.5,0.5], and is useful |
---|
78 | out to the range [-1e15,1e15], though with much reduced precision |
---|
79 | for larger values. |
---|
80 | """ |
---|
81 | scale = 1/numpy.pi |
---|
82 | offset = -numpy.pi/2 |
---|
83 | forward = numpy.arctan |
---|
84 | inverse = numpy.tan |
---|
85 | |
---|
86 | def fp_forward(x): |
---|
87 | """ |
---|
88 | Linearize floating point values using an exponential scale. |
---|
89 | |
---|
90 | Convert sign*m*2^e to sign*(e+1023+m), yielding a value in [-2047,2047] |
---|
91 | """ |
---|
92 | (m,e) = numpy.frexp(x) |
---|
93 | s = numpy.sign(x) |
---|
94 | v = (e+1023+m*s)*s |
---|
95 | return v |
---|
96 | def fp_inverse(v): |
---|
97 | """ |
---|
98 | Restore floating point value from linear form on an exponential scale. |
---|
99 | |
---|
100 | Convert sign*(e+1023+m) to sign*m*2^e, yielding a value in [-1e308,1e308] |
---|
101 | """ |
---|
102 | s = sign(v) |
---|
103 | v *= s |
---|
104 | m = floor(v) |
---|
105 | e = v-m |
---|
106 | x = ldexp(s*m,e) |
---|
107 | return x |
---|
108 | fp_min, fp_max = -(1024+1023), (1024+1023) |
---|
109 | class Asymptote: |
---|
110 | """ |
---|
111 | Logarithmic asymptote function. |
---|
112 | |
---|
113 | This is an asymptote function which follows the floating point |
---|
114 | representation, using the following mapping:: |
---|
115 | |
---|
116 | [-1e308,-1e-308] -> [0,0.5) |
---|
117 | 0 -> 0.5 |
---|
118 | [1e-308,1e308] -> (0.5+eps,1] |
---|
119 | |
---|
120 | With 11 bits of the 53 bits of available precision for the exponent, |
---|
121 | this leaves a tolerance of 1e-12 on the fitting parameters, which is |
---|
122 | easily good enough for any real unbounded fitting problem. The user |
---|
123 | can increased the precision on the bounded parameters by using tighter |
---|
124 | bounds. |
---|
125 | """ |
---|
126 | scale = 1/(fp_max-fp_min) |
---|
127 | offset = fp_min |
---|
128 | forward = fp_forward |
---|
129 | inverse = fp_inverse |
---|
130 | |
---|
131 | class ZeroOneMapper(object): |
---|
132 | """ |
---|
133 | Map function range into [0,1]**n. |
---|
134 | |
---|
135 | Given f: [a,b] -> R |
---|
136 | Defines f': [0,1] -> R |
---|
137 | |
---|
138 | The method encode(x) returns a value in [0,1] |
---|
139 | The method decode(v) returns a value in [a,b] |
---|
140 | The method __call__(v) returns f(decode(v)) |
---|
141 | |
---|
142 | For indefinite and semidefinte ranges, an asymptote transformation |
---|
143 | is needed. Normally this is `park.rangemap.Asymptote` which supports |
---|
144 | the full floating point range of values, but is limited to about |
---|
145 | 12 digits of precision. The arctan function can also be used |
---|
146 | (see `park.rangemap.ArctanAsymptote`). |
---|
147 | |
---|
148 | Range is determined by the bounds low and high. Each dimension may be |
---|
149 | unbounded, semi-definite or bounded. Bounded functions use a linear |
---|
150 | mapping between low and high. Unbounded functions use an asymptote |
---|
151 | function, which should be -1 at -inf, 0 at 0 and 1 at +inf, and |
---|
152 | approximate the identity function between [-0.5,0.5]. |
---|
153 | |
---|
154 | This can be used to turn any unconstrained optimizer into a [0,1] |
---|
155 | bounded optimizer by sending infeasible points to infinity. |
---|
156 | |
---|
157 | Note: Newton-style optimizers will not work in this regime, but |
---|
158 | instead require a hint about the direction of the unconstrained |
---|
159 | region. |
---|
160 | """ |
---|
161 | def __init__(self, base_function, low, high, asymptote=Asymptote, |
---|
162 | range_check=False): |
---|
163 | """ |
---|
164 | Function range mapper. See `park.rangemap.ZeroOneMapper` for details. |
---|
165 | |
---|
166 | base_function is the function being wrapped. |
---|
167 | |
---|
168 | low[k],high[k] is the range of values for each fitting parameter k. |
---|
169 | |
---|
170 | range_check is True if calls to the mapper may include out of range |
---|
171 | values. In this case, f(v) returns inf for out of range values and |
---|
172 | encode/decode raise exceptions. |
---|
173 | |
---|
174 | asymptote is the asymptote function to use when linearizing |
---|
175 | indefinite ranges. |
---|
176 | """ |
---|
177 | |
---|
178 | unbounded_low = numpy.isinf(low) |
---|
179 | unbounded_high = numpy.isinf(high) |
---|
180 | unbounded = unbounded_low|unbounded_high |
---|
181 | |
---|
182 | # Determine linear scale and offset for v = (x-offset)/scale |
---|
183 | # For semi-infinite ranges, use the known bound as the offset. This |
---|
184 | # transforms [a,inf) to [0.5,1] and (-inf,b] to [0,0.5]. |
---|
185 | # Infinite ranges should use offset 0. |
---|
186 | scale = (high-low) |
---|
187 | offset = -low |
---|
188 | scale[unbounded_low | unbounded_high] = 0. |
---|
189 | offset[unbounded_low] = high[unbounded_low] |
---|
190 | offset[unbounded_high] = low[unbounded_high] |
---|
191 | offset[unbounded_low & unbounded_high] = 0. # low&high must be last |
---|
192 | |
---|
193 | # Determine transformed scale and offset |
---|
194 | # If the value is unbounded, then use asymptote directly. |
---|
195 | # If bounded below, then transform [0.5,1] to [0,1] using (v-0.5)/0.5 |
---|
196 | # If bounded above, then transform [0,0.5] to [0,1] using v/0.5 |
---|
197 | a_scale = numpy.ones(scale.shape)*asymptote.scale |
---|
198 | a_scale[unbounded_low ^ unbounded_high] *= 0.5 |
---|
199 | a_offset = numpy.zeros(offset.shape)+asymptote.offset |
---|
200 | a_offset[unbounded_high & ~unbounded_low] += 0.5*asymptote.scale |
---|
201 | a_forward = asymptote.forward |
---|
202 | a_inverse = asymptote.inverse |
---|
203 | |
---|
204 | # Preselect the relevant elements |
---|
205 | a_scale = a_scale[unbounded] |
---|
206 | a_offset = a_offset[unbounded] |
---|
207 | |
---|
208 | # Remember the transformation parameters |
---|
209 | self.low,self.high = low,high |
---|
210 | self.base_function = base_function |
---|
211 | self.scale,self.offset = scale,offset |
---|
212 | self.a_scale,self.a_offset = a_scale,a_offset |
---|
213 | self.a_forward,self.a_inverse = a_forward,a_inverse |
---|
214 | |
---|
215 | # To minimize function call overhead, use only the linear bounds |
---|
216 | # tranform if the problem is completely bounded. |
---|
217 | if numpy.any(unbounded): |
---|
218 | self.__call__ = self._indefinite |
---|
219 | else: |
---|
220 | self.__call__ = self._definite |
---|
221 | |
---|
222 | def _indefinite(self, v): |
---|
223 | """Use this function if some bounds are indefinite""" |
---|
224 | x = v.copy() |
---|
225 | x[unbounded] = self.a_inverse(x[unbounded])*self.a_scale + self.a_offset |
---|
226 | x = x*self.scale+self.offset |
---|
227 | return self.base_function(x) |
---|
228 | def _definite(self, v): |
---|
229 | """Use this function if all bounds are definite""" |
---|
230 | return self.base_function(v*self.scale+self.offset) |
---|
231 | def _indefinite_checked(self, v): |
---|
232 | """Use this function if some bounds are indefinite and ranges need |
---|
233 | to be checked""" |
---|
234 | if numpy.any(v<0|v>1): return numpy.inf |
---|
235 | x = v.copy() |
---|
236 | x[unbounded] = self.a_inverse(x[unbounded])*self.a_scale + self.a_offset |
---|
237 | x = x*self.scale+self.offset |
---|
238 | return self.base_function(x) |
---|
239 | def _definite_checked(self, v): |
---|
240 | """Use this function if all bounds are definite, but ranges need |
---|
241 | to be checked""" |
---|
242 | if numpy.any(v<0|v>1): return numpy.inf |
---|
243 | return self.base_function(v*self.scale+self.offset) |
---|
244 | |
---|
245 | def decode(v): |
---|
246 | """Transform from range [0,1] to [a,b].""" |
---|
247 | if numpy.any(v<0|v>1): |
---|
248 | raise RuntimeError("value out of range [0,1]") |
---|
249 | x = v.copy() |
---|
250 | x[unbounded] = self.a_forward(x[unbounded])*a_scale + a_offset |
---|
251 | x = x*scale+offset |
---|
252 | return x |
---|
253 | def encode(x): |
---|
254 | """Transform from range [a,b] to [0,1].""" |
---|
255 | if numpy.any(x<self.low|x>self.high): |
---|
256 | raise RuntimeError("value out of range [a,b]") |
---|
257 | v = (x-offset)/scale |
---|
258 | v[unbounded] = (self.a_inverse(v[unbounded])-a_offset)/a_scale |
---|
259 | return v |
---|
260 | |
---|
261 | # Functional implementation: return transformation functions. |
---|
262 | # This is faster but less pythonic |
---|
263 | def zero_one_mapper(base_function, low, high, asymptote=ArctanAsymptote): |
---|
264 | """ |
---|
265 | Map function range into [0,1]**n. |
---|
266 | |
---|
267 | Returns a pair of functions f and inv. The function f takes an |
---|
268 | encoded value in |
---|
269 | encode, which takes x and returns a value |
---|
270 | in [0,1] and decode, which takes a value in [0,1] and returns x. |
---|
271 | |
---|
272 | Range is determined by the bounds low and high. Each dimension may be |
---|
273 | unbounded, semi-definite or bounded. Bounded functions use a linear |
---|
274 | mapping between low and high. Unbounded functions use an asymptote |
---|
275 | function, which should be -1 at -inf, 0 at 0 and 1 at +inf, and |
---|
276 | approximate the identity function between [-0.5,0.5]. |
---|
277 | |
---|
278 | This can be used to turn any unconstrained optimizer into a [0,1] |
---|
279 | bounded optimizer by sending infeasible points to infinity. |
---|
280 | |
---|
281 | Note: Newton-style optimizers will not work in this regime, but |
---|
282 | instead require a hint about the direction of the unconstrained |
---|
283 | region. |
---|
284 | """ |
---|
285 | |
---|
286 | unbounded_low = numpy.isinf(low) |
---|
287 | unbounded_high = numpy.isinf(high) |
---|
288 | unbounded = unbounded_low|unbounded_high |
---|
289 | |
---|
290 | # Determine linear scale and offset for v = (x-offset)/scale |
---|
291 | # For semi-infinite ranges, use the known bound as the offset. This |
---|
292 | # transforms [a,inf) to [0.5,1] and (-inf,b] to [0,0.5]. |
---|
293 | # Infinite ranges should use offset 0. |
---|
294 | scale = (high-low) |
---|
295 | offset = -low |
---|
296 | scale[unbounded_low | unbounded_high] = 0. |
---|
297 | offset[unbounded_low] = high[unbounded_low] |
---|
298 | offset[unbounded_high] = low[unbounded_high] |
---|
299 | offset[unbounded_low & unbounded_high] = 0. # low&high must be last |
---|
300 | |
---|
301 | # Determine transformed scale and offset |
---|
302 | # If the value is unbounded, then use asymptote directly. |
---|
303 | # If bounded below, then transform [0.5,1] to [0,1] using (v-0.5)/0.5 |
---|
304 | # If bounded above, then transform [0,0.5] to [0,1] using v/0.5 |
---|
305 | a_scale = numpy.ones(scale.shape)*asymptote.scale |
---|
306 | a_scale[unbounded_low ^ unbounded_high] *= 0.5 |
---|
307 | a_offset = numpy.zeros(offset.shape)+asymptote.offset |
---|
308 | a_offset[unbounded_high & ~unbounded_low] += 0.5*asymptote.scale |
---|
309 | |
---|
310 | # Preselect the relevant elements |
---|
311 | a_scale = a_scale[unbounded] |
---|
312 | a_offset = a_offset[unbounded] |
---|
313 | |
---|
314 | |
---|
315 | if numpy.any(unbounded): |
---|
316 | def function(v): |
---|
317 | x = v.copy() |
---|
318 | x[unbounded] = asymptote.inverse(x[unbounded])*a_scale + a_offset |
---|
319 | x = x*scale+offset |
---|
320 | return base_function(x) |
---|
321 | def decode(v): |
---|
322 | x = v.copy() |
---|
323 | x[unbounded] = asymptote.inverse(x[unbounded])*a_scale + a_offset |
---|
324 | x = x*scale+offset |
---|
325 | return x |
---|
326 | def encode(x): |
---|
327 | v = (x-offset)/scale |
---|
328 | v[unbounded] = (asymptote.function(v[unbounded])-a_offset)/a_scale |
---|
329 | return v |
---|
330 | else: |
---|
331 | def function(v): return base_function( (x-offset)/scale ) |
---|
332 | def decode(v): return (v*scale+offset) |
---|
333 | def function(x): return base_function( (x-offset)/scale ) |
---|
334 | def decode(v): return (v*scale+offset) |
---|
335 | |
---|
336 | return function, encode, decode |
---|
337 | |
---|
338 | |
---|
339 | def bounded(function, low, high): |
---|
340 | """ |
---|
341 | Evaluate a function with bounds checking. |
---|
342 | |
---|
343 | This can be used to turn any unconstrained optimizer into a |
---|
344 | constrained optimizer by sending infeasible points to infinity. |
---|
345 | |
---|
346 | Note: Newton-style optimizers will not work in this regime, but |
---|
347 | instead require a hint about the direction of the unconstrained |
---|
348 | region. |
---|
349 | |
---|
350 | Note: unused function which may be removed in future versions. |
---|
351 | """ |
---|
352 | def function_wrapper(x): |
---|
353 | if numpy.any((x<low) | (x>high)): |
---|
354 | return numpy.Inf |
---|
355 | else: |
---|
356 | return function(x) |
---|
357 | function_wrapper.__doc__ = function.__doc__ |
---|
358 | return function_wrapper |
---|
359 | |
---|