[3570545] | 1 | """ |
---|
| 2 | Defines transformations between the a fit space and the parameter space. |
---|
| 3 | |
---|
| 4 | The parameter space maps a set of possibly bounded dimensions into a |
---|
| 5 | real-valued fitness:: |
---|
| 6 | |
---|
| 7 | f: [a,b]**n |-> R |
---|
| 8 | |
---|
| 9 | The fit space is constrained to map values in the unit box:: |
---|
| 10 | |
---|
| 11 | f': [0,1]**n |-> R |
---|
| 12 | |
---|
| 13 | Here we can define f' using the zero-one mapper:: |
---|
| 14 | |
---|
| 15 | f' = ZeroOneMapper(f,a,b) |
---|
| 16 | f'(v) = f(x) |
---|
| 17 | |
---|
| 18 | An asymptote function maps x to [0,1], preserving at least 12 digits of |
---|
| 19 | precision. |
---|
| 20 | |
---|
| 21 | Using this mapping, the optimizer can operate in a well known space |
---|
| 22 | independent of parameter precision. This allows the use of reasonable |
---|
| 23 | constants for items such as a step size and initial value. |
---|
| 24 | |
---|
| 25 | Note: we do not yet support fitness functions with analytic derivatives. |
---|
| 26 | Given df/dp and mapping function f'(v) = f(M(v)) then df'/dv = df/dM dM/dv. |
---|
| 27 | So the derivatives need to be multiplied by the derivative of the |
---|
| 28 | parameter mapper. Not difficult computationally, but the definition of |
---|
| 29 | the fitness function does not currently support this organization. |
---|
| 30 | """ |
---|
| 31 | |
---|
| 32 | |
---|
| 33 | class FitCobyla(LocalFit): |
---|
| 34 | """ |
---|
| 35 | Local minimizer using COBYLA, Constrained Optimization by Linear |
---|
| 36 | Approximation. |
---|
| 37 | |
---|
| 38 | COBYLA minimizes an objective function F(X) subject to M inequality |
---|
| 39 | constraints on X, where X is a vector of variables that has N components. |
---|
| 40 | The algorithm employs linear approximations to the objective and |
---|
| 41 | constraint functions, the approximations being formed by linear |
---|
| 42 | interpolation at N+1 points in the space of the variables. These |
---|
| 43 | interpolation points can be regarded as vertices of a simplex. The |
---|
| 44 | parameter rho controls the size of the simplex and it is reduced |
---|
| 45 | automatically from radius to xtol. For each RHO the subroutine tries |
---|
| 46 | to achieve a good vector of variables for the current size, and then |
---|
| 47 | RHO is reduced until the value xtol is reached. Therefore radius and |
---|
| 48 | xtol should be set to reasonable initial changes to and the required |
---|
| 49 | accuracy in the variables respectively, but this accuracy should be |
---|
| 50 | viewed as a subject for experimentation because it is not guaranteed. |
---|
| 51 | |
---|
| 52 | Basic bounds constraints are built into the interface. These bounds |
---|
| 53 | map the space into the n-D unit cube, so values values for radius |
---|
| 54 | and xtol should be chosen accordingly. Regardless of xtol, the |
---|
| 55 | fit is stopped after maxiter function evaluations. |
---|
| 56 | """ |
---|
| 57 | radius = 0.05 |
---|
| 58 | """Size of the initial simplex; this is a portion between 0 and 1""" |
---|
| 59 | xtol = 1e-4 |
---|
| 60 | """Stop when simplex vertices are within xtol of each other""" |
---|
| 61 | maxiter = 1000 |
---|
| 62 | def __call__(self): |
---|
| 63 | from scipy.optimize.cobyla import fmin_cobyla as cobyla |
---|
| 64 | |
---|
| 65 | class ArctanAsymptote(object): |
---|
| 66 | """ |
---|
| 67 | Arctan asymptote function for mapping (-inf,inf) to [0,1]. |
---|
| 68 | |
---|
| 69 | With all attributes constant, either the class or an instance can be used. |
---|
| 70 | |
---|
| 71 | An asymptote function is monotonically increasing and finite everywhere. |
---|
| 72 | Assuming the function is a at -inf and b at +inf, scale is 1/(b-a) and |
---|
| 73 | offset is a. Together with an inverse function, this allows us to |
---|
| 74 | transform between an infinite range and the range [0,1]. Semidefinite |
---|
| 75 | map to (-inf,0] and [0,inf). |
---|
| 76 | |
---|
| 77 | ArctanAsymptote is approximately linear in [-0.5,0.5], and is useful |
---|
| 78 | out to the range [-1e15,1e15], though with much reduced precision |
---|
| 79 | for larger values. |
---|
| 80 | """ |
---|
| 81 | scale = 1/numpy.pi |
---|
| 82 | offset = -numpy.pi/2 |
---|
| 83 | forward = numpy.arctan |
---|
| 84 | inverse = numpy.tan |
---|
| 85 | |
---|
| 86 | def fp_forward(x): |
---|
| 87 | """ |
---|
| 88 | Linearize floating point values using an exponential scale. |
---|
| 89 | |
---|
| 90 | Convert sign*m*2^e to sign*(e+1023+m), yielding a value in [-2047,2047] |
---|
| 91 | """ |
---|
| 92 | (m,e) = numpy.frexp(x) |
---|
| 93 | s = numpy.sign(x) |
---|
| 94 | v = (e+1023+m*s)*s |
---|
| 95 | return v |
---|
| 96 | def fp_inverse(v): |
---|
| 97 | """ |
---|
| 98 | Restore floating point value from linear form on an exponential scale. |
---|
| 99 | |
---|
| 100 | Convert sign*(e+1023+m) to sign*m*2^e, yielding a value in [-1e308,1e308] |
---|
| 101 | """ |
---|
| 102 | s = sign(v) |
---|
| 103 | v *= s |
---|
| 104 | m = floor(v) |
---|
| 105 | e = v-m |
---|
| 106 | x = ldexp(s*m,e) |
---|
| 107 | return x |
---|
| 108 | fp_min, fp_max = -(1024+1023), (1024+1023) |
---|
| 109 | class Asymptote: |
---|
| 110 | """ |
---|
| 111 | Logarithmic asymptote function. |
---|
| 112 | |
---|
| 113 | This is an asymptote function which follows the floating point |
---|
| 114 | representation, using the following mapping:: |
---|
| 115 | |
---|
| 116 | [-1e308,-1e-308] -> [0,0.5) |
---|
| 117 | 0 -> 0.5 |
---|
| 118 | [1e-308,1e308] -> (0.5+eps,1] |
---|
| 119 | |
---|
| 120 | With 11 bits of the 53 bits of available precision for the exponent, |
---|
| 121 | this leaves a tolerance of 1e-12 on the fitting parameters, which is |
---|
| 122 | easily good enough for any real unbounded fitting problem. The user |
---|
| 123 | can increased the precision on the bounded parameters by using tighter |
---|
| 124 | bounds. |
---|
| 125 | """ |
---|
| 126 | scale = 1/(fp_max-fp_min) |
---|
| 127 | offset = fp_min |
---|
| 128 | forward = fp_forward |
---|
| 129 | inverse = fp_inverse |
---|
| 130 | |
---|
| 131 | class ZeroOneMapper(object): |
---|
| 132 | """ |
---|
| 133 | Map function range into [0,1]**n. |
---|
| 134 | |
---|
| 135 | Given f: [a,b] -> R |
---|
| 136 | Defines f': [0,1] -> R |
---|
| 137 | |
---|
| 138 | The method encode(x) returns a value in [0,1] |
---|
| 139 | The method decode(v) returns a value in [a,b] |
---|
| 140 | The method __call__(v) returns f(decode(v)) |
---|
| 141 | |
---|
| 142 | For indefinite and semidefinte ranges, an asymptote transformation |
---|
| 143 | is needed. Normally this is `park.rangemap.Asymptote` which supports |
---|
| 144 | the full floating point range of values, but is limited to about |
---|
| 145 | 12 digits of precision. The arctan function can also be used |
---|
| 146 | (see `park.rangemap.ArctanAsymptote`). |
---|
| 147 | |
---|
| 148 | Range is determined by the bounds low and high. Each dimension may be |
---|
| 149 | unbounded, semi-definite or bounded. Bounded functions use a linear |
---|
| 150 | mapping between low and high. Unbounded functions use an asymptote |
---|
| 151 | function, which should be -1 at -inf, 0 at 0 and 1 at +inf, and |
---|
| 152 | approximate the identity function between [-0.5,0.5]. |
---|
| 153 | |
---|
| 154 | This can be used to turn any unconstrained optimizer into a [0,1] |
---|
| 155 | bounded optimizer by sending infeasible points to infinity. |
---|
| 156 | |
---|
| 157 | Note: Newton-style optimizers will not work in this regime, but |
---|
| 158 | instead require a hint about the direction of the unconstrained |
---|
| 159 | region. |
---|
| 160 | """ |
---|
| 161 | def __init__(self, base_function, low, high, asymptote=Asymptote, |
---|
| 162 | range_check=False): |
---|
| 163 | """ |
---|
| 164 | Function range mapper. See `park.rangemap.ZeroOneMapper` for details. |
---|
| 165 | |
---|
| 166 | base_function is the function being wrapped. |
---|
| 167 | |
---|
| 168 | low[k],high[k] is the range of values for each fitting parameter k. |
---|
| 169 | |
---|
| 170 | range_check is True if calls to the mapper may include out of range |
---|
| 171 | values. In this case, f(v) returns inf for out of range values and |
---|
| 172 | encode/decode raise exceptions. |
---|
| 173 | |
---|
| 174 | asymptote is the asymptote function to use when linearizing |
---|
| 175 | indefinite ranges. |
---|
| 176 | """ |
---|
| 177 | |
---|
| 178 | unbounded_low = numpy.isinf(low) |
---|
| 179 | unbounded_high = numpy.isinf(high) |
---|
| 180 | unbounded = unbounded_low|unbounded_high |
---|
| 181 | |
---|
| 182 | # Determine linear scale and offset for v = (x-offset)/scale |
---|
| 183 | # For semi-infinite ranges, use the known bound as the offset. This |
---|
| 184 | # transforms [a,inf) to [0.5,1] and (-inf,b] to [0,0.5]. |
---|
| 185 | # Infinite ranges should use offset 0. |
---|
| 186 | scale = (high-low) |
---|
| 187 | offset = -low |
---|
| 188 | scale[unbounded_low | unbounded_high] = 0. |
---|
| 189 | offset[unbounded_low] = high[unbounded_low] |
---|
| 190 | offset[unbounded_high] = low[unbounded_high] |
---|
| 191 | offset[unbounded_low & unbounded_high] = 0. # low&high must be last |
---|
| 192 | |
---|
| 193 | # Determine transformed scale and offset |
---|
| 194 | # If the value is unbounded, then use asymptote directly. |
---|
| 195 | # If bounded below, then transform [0.5,1] to [0,1] using (v-0.5)/0.5 |
---|
| 196 | # If bounded above, then transform [0,0.5] to [0,1] using v/0.5 |
---|
| 197 | a_scale = numpy.ones(scale.shape)*asymptote.scale |
---|
| 198 | a_scale[unbounded_low ^ unbounded_high] *= 0.5 |
---|
| 199 | a_offset = numpy.zeros(offset.shape)+asymptote.offset |
---|
| 200 | a_offset[unbounded_high & ~unbounded_low] += 0.5*asymptote.scale |
---|
| 201 | a_forward = asymptote.forward |
---|
| 202 | a_inverse = asymptote.inverse |
---|
| 203 | |
---|
| 204 | # Preselect the relevant elements |
---|
| 205 | a_scale = a_scale[unbounded] |
---|
| 206 | a_offset = a_offset[unbounded] |
---|
| 207 | |
---|
| 208 | # Remember the transformation parameters |
---|
| 209 | self.low,self.high = low,high |
---|
| 210 | self.base_function = base_function |
---|
| 211 | self.scale,self.offset = scale,offset |
---|
| 212 | self.a_scale,self.a_offset = a_scale,a_offset |
---|
| 213 | self.a_forward,self.a_inverse = a_forward,a_inverse |
---|
| 214 | |
---|
| 215 | # To minimize function call overhead, use only the linear bounds |
---|
| 216 | # tranform if the problem is completely bounded. |
---|
| 217 | if numpy.any(unbounded): |
---|
| 218 | self.__call__ = self._indefinite |
---|
| 219 | else: |
---|
| 220 | self.__call__ = self._definite |
---|
| 221 | |
---|
| 222 | def _indefinite(self, v): |
---|
| 223 | """Use this function if some bounds are indefinite""" |
---|
| 224 | x = v.copy() |
---|
| 225 | x[unbounded] = self.a_inverse(x[unbounded])*self.a_scale + self.a_offset |
---|
| 226 | x = x*self.scale+self.offset |
---|
| 227 | return self.base_function(x) |
---|
| 228 | def _definite(self, v): |
---|
| 229 | """Use this function if all bounds are definite""" |
---|
| 230 | return self.base_function(v*self.scale+self.offset) |
---|
| 231 | def _indefinite_checked(self, v): |
---|
| 232 | """Use this function if some bounds are indefinite and ranges need |
---|
| 233 | to be checked""" |
---|
| 234 | if numpy.any(v<0|v>1): return numpy.inf |
---|
| 235 | x = v.copy() |
---|
| 236 | x[unbounded] = self.a_inverse(x[unbounded])*self.a_scale + self.a_offset |
---|
| 237 | x = x*self.scale+self.offset |
---|
| 238 | return self.base_function(x) |
---|
| 239 | def _definite_checked(self, v): |
---|
| 240 | """Use this function if all bounds are definite, but ranges need |
---|
| 241 | to be checked""" |
---|
| 242 | if numpy.any(v<0|v>1): return numpy.inf |
---|
| 243 | return self.base_function(v*self.scale+self.offset) |
---|
| 244 | |
---|
| 245 | def decode(v): |
---|
| 246 | """Transform from range [0,1] to [a,b].""" |
---|
| 247 | if numpy.any(v<0|v>1): |
---|
| 248 | raise RuntimeError("value out of range [0,1]") |
---|
| 249 | x = v.copy() |
---|
| 250 | x[unbounded] = self.a_forward(x[unbounded])*a_scale + a_offset |
---|
| 251 | x = x*scale+offset |
---|
| 252 | return x |
---|
| 253 | def encode(x): |
---|
| 254 | """Transform from range [a,b] to [0,1].""" |
---|
| 255 | if numpy.any(x<self.low|x>self.high): |
---|
| 256 | raise RuntimeError("value out of range [a,b]") |
---|
| 257 | v = (x-offset)/scale |
---|
| 258 | v[unbounded] = (self.a_inverse(v[unbounded])-a_offset)/a_scale |
---|
| 259 | return v |
---|
| 260 | |
---|
| 261 | # Functional implementation: return transformation functions. |
---|
| 262 | # This is faster but less pythonic |
---|
| 263 | def zero_one_mapper(base_function, low, high, asymptote=ArctanAsymptote): |
---|
| 264 | """ |
---|
| 265 | Map function range into [0,1]**n. |
---|
| 266 | |
---|
| 267 | Returns a pair of functions f and inv. The function f takes an |
---|
| 268 | encoded value in |
---|
| 269 | encode, which takes x and returns a value |
---|
| 270 | in [0,1] and decode, which takes a value in [0,1] and returns x. |
---|
| 271 | |
---|
| 272 | Range is determined by the bounds low and high. Each dimension may be |
---|
| 273 | unbounded, semi-definite or bounded. Bounded functions use a linear |
---|
| 274 | mapping between low and high. Unbounded functions use an asymptote |
---|
| 275 | function, which should be -1 at -inf, 0 at 0 and 1 at +inf, and |
---|
| 276 | approximate the identity function between [-0.5,0.5]. |
---|
| 277 | |
---|
| 278 | This can be used to turn any unconstrained optimizer into a [0,1] |
---|
| 279 | bounded optimizer by sending infeasible points to infinity. |
---|
| 280 | |
---|
| 281 | Note: Newton-style optimizers will not work in this regime, but |
---|
| 282 | instead require a hint about the direction of the unconstrained |
---|
| 283 | region. |
---|
| 284 | """ |
---|
| 285 | |
---|
| 286 | unbounded_low = numpy.isinf(low) |
---|
| 287 | unbounded_high = numpy.isinf(high) |
---|
| 288 | unbounded = unbounded_low|unbounded_high |
---|
| 289 | |
---|
| 290 | # Determine linear scale and offset for v = (x-offset)/scale |
---|
| 291 | # For semi-infinite ranges, use the known bound as the offset. This |
---|
| 292 | # transforms [a,inf) to [0.5,1] and (-inf,b] to [0,0.5]. |
---|
| 293 | # Infinite ranges should use offset 0. |
---|
| 294 | scale = (high-low) |
---|
| 295 | offset = -low |
---|
| 296 | scale[unbounded_low | unbounded_high] = 0. |
---|
| 297 | offset[unbounded_low] = high[unbounded_low] |
---|
| 298 | offset[unbounded_high] = low[unbounded_high] |
---|
| 299 | offset[unbounded_low & unbounded_high] = 0. # low&high must be last |
---|
| 300 | |
---|
| 301 | # Determine transformed scale and offset |
---|
| 302 | # If the value is unbounded, then use asymptote directly. |
---|
| 303 | # If bounded below, then transform [0.5,1] to [0,1] using (v-0.5)/0.5 |
---|
| 304 | # If bounded above, then transform [0,0.5] to [0,1] using v/0.5 |
---|
| 305 | a_scale = numpy.ones(scale.shape)*asymptote.scale |
---|
| 306 | a_scale[unbounded_low ^ unbounded_high] *= 0.5 |
---|
| 307 | a_offset = numpy.zeros(offset.shape)+asymptote.offset |
---|
| 308 | a_offset[unbounded_high & ~unbounded_low] += 0.5*asymptote.scale |
---|
| 309 | |
---|
| 310 | # Preselect the relevant elements |
---|
| 311 | a_scale = a_scale[unbounded] |
---|
| 312 | a_offset = a_offset[unbounded] |
---|
| 313 | |
---|
| 314 | |
---|
| 315 | if numpy.any(unbounded): |
---|
| 316 | def function(v): |
---|
| 317 | x = v.copy() |
---|
| 318 | x[unbounded] = asymptote.inverse(x[unbounded])*a_scale + a_offset |
---|
| 319 | x = x*scale+offset |
---|
| 320 | return base_function(x) |
---|
| 321 | def decode(v): |
---|
| 322 | x = v.copy() |
---|
| 323 | x[unbounded] = asymptote.inverse(x[unbounded])*a_scale + a_offset |
---|
| 324 | x = x*scale+offset |
---|
| 325 | return x |
---|
| 326 | def encode(x): |
---|
| 327 | v = (x-offset)/scale |
---|
| 328 | v[unbounded] = (asymptote.function(v[unbounded])-a_offset)/a_scale |
---|
| 329 | return v |
---|
| 330 | else: |
---|
| 331 | def function(v): return base_function( (x-offset)/scale ) |
---|
| 332 | def decode(v): return (v*scale+offset) |
---|
| 333 | def function(x): return base_function( (x-offset)/scale ) |
---|
| 334 | def decode(v): return (v*scale+offset) |
---|
| 335 | |
---|
| 336 | return function, encode, decode |
---|
| 337 | |
---|
| 338 | |
---|
| 339 | def bounded(function, low, high): |
---|
| 340 | """ |
---|
| 341 | Evaluate a function with bounds checking. |
---|
| 342 | |
---|
| 343 | This can be used to turn any unconstrained optimizer into a |
---|
| 344 | constrained optimizer by sending infeasible points to infinity. |
---|
| 345 | |
---|
| 346 | Note: Newton-style optimizers will not work in this regime, but |
---|
| 347 | instead require a hint about the direction of the unconstrained |
---|
| 348 | region. |
---|
| 349 | |
---|
| 350 | Note: unused function which may be removed in future versions. |
---|
| 351 | """ |
---|
| 352 | def function_wrapper(x): |
---|
| 353 | if numpy.any((x<low) | (x>high)): |
---|
| 354 | return numpy.Inf |
---|
| 355 | else: |
---|
| 356 | return function(x) |
---|
| 357 | function_wrapper.__doc__ = function.__doc__ |
---|
| 358 | return function_wrapper |
---|
| 359 | |
---|