[3570545] | 1 | """ |
---|
| 2 | Parallel map-reduce implementation using threads. |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | import traceback |
---|
| 6 | import thread |
---|
| 7 | |
---|
| 8 | class Collector(object): |
---|
| 9 | """ |
---|
| 10 | Abstract interface to map-reduce accumulator function. |
---|
| 11 | """ |
---|
| 12 | def __call__(self, part): |
---|
| 13 | """Receive next part, storing it in the accumulated result""" |
---|
| 14 | def finalize(self): |
---|
| 15 | """Called when all parts have been accumulated""" |
---|
| 16 | def error(self, part, msg): |
---|
| 17 | """ |
---|
| 18 | Exception seen on executing map or reduce. The collector |
---|
| 19 | can adjust the accumulated result appropriately to reflect |
---|
| 20 | the error. |
---|
| 21 | """ |
---|
| 22 | |
---|
| 23 | class Mapper(object): |
---|
| 24 | """ |
---|
| 25 | Abstract interface to map-reduce mapper function. |
---|
| 26 | """ |
---|
| 27 | def __call__(self, value): |
---|
| 28 | """Evaluate part""" |
---|
| 29 | def abort(self): |
---|
| 30 | """Stop the mapper""" |
---|
| 31 | |
---|
| 32 | def pmap(mapper, inputs): |
---|
| 33 | """ |
---|
| 34 | Apply function mapper to all inputs. |
---|
| 35 | |
---|
| 36 | This is the serial version of a parallel iterator, yielding the next |
---|
| 37 | sequence value as soon as it is available. There is no guarantee |
---|
| 38 | that the order of the inputs will be preserved in the parallel |
---|
| 39 | version, so don't depend on it! |
---|
| 40 | """ |
---|
| 41 | for item in inputs: |
---|
| 42 | yield mapper(item) |
---|
| 43 | |
---|
| 44 | def preduce(collector, outputs): |
---|
| 45 | """ |
---|
| 46 | Collect all outputs, calling collector(item) for each item in the sequence. |
---|
| 47 | """ |
---|
| 48 | for item in outputs: |
---|
| 49 | collector(item) |
---|
| 50 | return collector |
---|
| 51 | |
---|
| 52 | def _pmapreduce_thread(fn, collector, inputs): |
---|
| 53 | try: |
---|
| 54 | preduce(collector, pmap(fn,inputs)) |
---|
| 55 | collector.finalize() |
---|
| 56 | except KeyboardInterrupt: |
---|
| 57 | fn.abort() |
---|
| 58 | thread.interrupt_main() |
---|
| 59 | #except: |
---|
| 60 | # raise |
---|
| 61 | # msg = traceback.format_exc() |
---|
| 62 | # collector.error(msg) |
---|
| 63 | |
---|
| 64 | def _pmapreduce_profile(fn, collector, inputs): |
---|
| 65 | import cProfile, pstats, os |
---|
| 66 | def mapr(): |
---|
| 67 | _pmapreduce_thread(fn, collector, inputs) |
---|
| 68 | cProfile.runctx('mapr()', dict(mapr=mapr), {}, 'mapr.out') |
---|
| 69 | stats = pstats.Stats('mapr.out') |
---|
| 70 | #stats.sort_stats('time') |
---|
| 71 | stats.sort_stats('calls') |
---|
| 72 | stats.print_stats() |
---|
| 73 | os.unlink('mapr.out') |
---|
| 74 | |
---|
| 75 | profile_mapper = False |
---|
| 76 | """True if the mapper cost should be profiled.""" |
---|
| 77 | |
---|
| 78 | def pmapreduce(mapper, collector, inputs): |
---|
| 79 | """ |
---|
| 80 | Apply function mapper to inputs, accumulating the results in collector. |
---|
| 81 | |
---|
| 82 | Collector is a function which accepts the result of mapper(item) for |
---|
| 83 | each item of inputs. There is no guarantee that the outputs will be |
---|
| 84 | received in order. |
---|
| 85 | |
---|
| 86 | The map is executed in a separate thread so the function returns |
---|
| 87 | to the caller immediately. |
---|
| 88 | """ |
---|
| 89 | global profile_mapper |
---|
| 90 | fn = _pmapreduce_profile if profile_mapper else _pmapreduce_thread |
---|
| 91 | thread.start_new_thread(fn,(mapper,collector, inputs)) |
---|
| 92 | |
---|
| 93 | def main(): |
---|
| 94 | import time,numpy |
---|
| 95 | class TestCollector(object): |
---|
| 96 | def __init__(self): |
---|
| 97 | self.done = False |
---|
| 98 | def __call__(self, part): |
---|
| 99 | print "collecting",part,'for',id(self) |
---|
| 100 | def finalize(self): |
---|
| 101 | self.done = True |
---|
| 102 | print "finalizing" |
---|
| 103 | def abort(self): |
---|
| 104 | self.done = True |
---|
| 105 | print "aborting" |
---|
| 106 | def error(self,msg): |
---|
| 107 | print "error",msg |
---|
| 108 | |
---|
| 109 | class TestMapper(object): |
---|
| 110 | def __call__(self, x): |
---|
| 111 | print "mapping",x,'for',id(self) |
---|
| 112 | if x == 8: raise Exception('x is 8') |
---|
| 113 | time.sleep(4*numpy.random.rand()) |
---|
| 114 | return x |
---|
| 115 | |
---|
| 116 | collector1 = TestCollector() |
---|
| 117 | collector2 = TestCollector() |
---|
| 118 | pmapreduce(TestMapper(), collector1, [1,2,3,4,5]) |
---|
| 119 | pmapreduce(TestMapper(), collector2, [1,2,3,8]) |
---|
| 120 | while not collector1.done and not collector2.done: |
---|
| 121 | time.sleep(1) |
---|
| 122 | if __name__ == "__main__": main() |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | _ = ''' |
---|
| 126 | # The choice of job to do next is complicated. |
---|
| 127 | # 1. Strongly prefer a job of the same type as is already running |
---|
| 128 | # on the node. If this job requires significant resources (e.g., |
---|
| 129 | # a large file transfer) increase that preference. |
---|
| 130 | # 2. Strongly prefer sending a user's own job to their own machine. |
---|
| 131 | # That way at least they can make progress even if the cluster is busy. |
---|
| 132 | # 3. Try to start each job as soon as possible. That way if there are |
---|
| 133 | # errors, then the user gets feedback early in the process. |
---|
| 134 | # 4. Try to balance the load across users. Rather than first come |
---|
| 135 | # first serve, jobs use round robin amongst users. |
---|
| 136 | # 5. Prefer high priority jobs. |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | def map(apply,collect,items,priority=1): |
---|
| 140 | mapper = MapJob(apply, items, collect, priority) |
---|
| 141 | |
---|
| 142 | class MapJob(object): |
---|
| 143 | """ |
---|
| 144 | Keep track of which jobs have been submitted and which are complete |
---|
| 145 | """ |
---|
| 146 | def __init__(self, workfn, worklist, manager, priority): |
---|
| 147 | self.workfn = workfn |
---|
| 148 | self.worklist = worklist |
---|
| 149 | self.manager = manager |
---|
| 150 | self.priority = priority |
---|
| 151 | self._priority_edge = 0 |
---|
| 152 | def next_work(self): |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | class MapServer(object): |
---|
| 156 | """ |
---|
| 157 | Keep track of work units. |
---|
| 158 | """ |
---|
| 159 | def __init__(self): |
---|
| 160 | self.workingset = {} |
---|
| 161 | |
---|
| 162 | def add_work(self, workfn, worklist, manager, priority): |
---|
| 163 | """ |
---|
| 164 | Add a new work list to distributed to worker objects. The manager |
---|
| 165 | gathers the results of the work. Work is assigned from the queue |
---|
| 166 | based on priority. |
---|
| 167 | """ |
---|
| 168 | job = MapJob(workfn, worklist, manager, priority) |
---|
| 169 | |
---|
| 170 | # add work to the queue in priority order |
---|
| 171 | for i,job in enumerate(self.jobs): |
---|
| 172 | if job.priority < priority: break |
---|
| 173 | self.jobs.insert(i,job) |
---|
| 174 | |
---|
| 175 | # Create an entry in a persistent store for each job to |
---|
| 176 | # capture completed work units and to recover from server |
---|
| 177 | # reboot. |
---|
| 178 | |
---|
| 179 | # Assign _priority_edge to cumsum(priority)/total_priority. |
---|
| 180 | # This allows us to select the next job according to priority |
---|
| 181 | # with a random number generator. |
---|
| 182 | # NOTE: scalability is a bit of a concern --- the lookup |
---|
| 183 | # operation is linear in the number of active jobs. This |
---|
| 184 | # can be mitigated by limiting the number of active jobs. |
---|
| 185 | total_priority = 0. |
---|
| 186 | for job in self.jobs: total_priority += job.priority |
---|
| 187 | edge = 0. |
---|
| 188 | for job in self.jobs: |
---|
| 189 | edge += job.priority/total_priority |
---|
| 190 | self.job._priority_edge = edge |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | def register(self, pool=None): |
---|
| 194 | """ |
---|
| 195 | Called by a worker when they are registering for work. |
---|
| 196 | |
---|
| 197 | Returns the next piece of work. |
---|
| 198 | """ |
---|
| 199 | P = numpy.random.rand() |
---|
| 200 | for job in self.jobs: |
---|
| 201 | if P < j._priority_edge: |
---|
| 202 | return job.new_work() |
---|
| 203 | |
---|
| 204 | return NoWork |
---|
| 205 | |
---|
| 206 | def update(self, jobid, result): |
---|
| 207 | """ |
---|
| 208 | Called by a worker when the work unit is complete. |
---|
| 209 | |
---|
| 210 | Returns the next piece of work. |
---|
| 211 | """ |
---|
| 212 | current_job = self.lookup(jobid) |
---|
| 213 | current_job.reduce(result) |
---|
| 214 | if numpy.random.rand() < current_job.switch_probability: |
---|
| 215 | return current_job.next_work() |
---|
| 216 | |
---|
| 217 | P = numpy.random.rand() |
---|
| 218 | for job in self.jobs: |
---|
| 219 | if P < job._priority_edge: |
---|
| 220 | if job == current_job: |
---|
| 221 | return curent_job.next_work() |
---|
| 222 | else: |
---|
| 223 | return job.new_work() |
---|
| 224 | |
---|
| 225 | return NoWork |
---|
| 226 | ''' |
---|