1 | |
---|
2 | # The job queue needs to be in a transaction/rollback protected database. |
---|
3 | # If the server is rebooted, long running jobs should continue to work. |
---|
4 | # |
---|
5 | from __future__ import division |
---|
6 | import numpy |
---|
7 | |
---|
8 | import simplex |
---|
9 | |
---|
10 | import fitresult, pmap, fit |
---|
11 | |
---|
12 | __all__ = ['fitmc', 'FitMCJob'] |
---|
13 | |
---|
14 | class LocalFit(object): |
---|
15 | """ |
---|
16 | Abstract interface for a local minimizer |
---|
17 | |
---|
18 | See `park.fitmc.FitSimplex` for a concrete implementation. |
---|
19 | """ |
---|
20 | def fit(self, objective, x0): |
---|
21 | """ |
---|
22 | Minimize the value of a fitness function. |
---|
23 | |
---|
24 | See `park.fitmc.Fitness` for the definition of the goodness of fit |
---|
25 | object. x0 is a vector containing the initial value for the fit. |
---|
26 | """ |
---|
27 | def abort(self): |
---|
28 | """ |
---|
29 | Cancel the fit. This will be called from a separate execution |
---|
30 | thread. The fit should terminate as soon as possible after this |
---|
31 | function has been called. Ideally this would interrupt the |
---|
32 | cur |
---|
33 | """ |
---|
34 | |
---|
35 | class FitSimplex(LocalFit): |
---|
36 | """ |
---|
37 | Local minimizer using Nelder-Mead simplex algorithm. |
---|
38 | |
---|
39 | Simplex is robust and derivative free, though not very efficient. |
---|
40 | |
---|
41 | This class wraps the bounds contrained Nelder-Mead simplex |
---|
42 | implementation for `park.simplex.simplex`. |
---|
43 | """ |
---|
44 | radius = 0.05 |
---|
45 | """Size of the initial simplex; this is a portion between 0 and 1""" |
---|
46 | xtol = 1 |
---|
47 | #xtol = 1e-4 |
---|
48 | """Stop when simplex vertices are within xtol of each other""" |
---|
49 | ftol = 1e-4 |
---|
50 | """Stop when vertex values are within ftol of each other""" |
---|
51 | maxiter = None |
---|
52 | """Maximum number of iterations before fit terminates""" |
---|
53 | def fit(self, fitness, x0): |
---|
54 | """Run the fit""" |
---|
55 | self.cancel = False |
---|
56 | pars = fitness.fit_parameters() |
---|
57 | bounds = numpy.array([p.range for p in pars]).T |
---|
58 | result = simplex.simplex(fitness, x0, bounds=bounds, |
---|
59 | radius=self.radius, xtol=self.xtol, |
---|
60 | ftol=self.ftol, maxiter=self.maxiter, |
---|
61 | abort_test=self._iscancelled) |
---|
62 | #print "calls:",result.calls |
---|
63 | #print "simplex returned",result.x,result.fx |
---|
64 | # Need to make our own copy of the fit results so that the |
---|
65 | # values don't get stomped on by the next fit iteration. |
---|
66 | fitpars = [fitresult.FitParameter(pars[i].name,pars[i].range,v) |
---|
67 | for i,v in enumerate(result.x)] |
---|
68 | res = fitresult.FitResult(fitpars, result.calls, result.fx) |
---|
69 | # Compute the parameter uncertainties from the jacobian |
---|
70 | res.calc_cov(fitness) |
---|
71 | return res |
---|
72 | |
---|
73 | def abort(self): |
---|
74 | """Cancel the fit in progress from another thread of execution""" |
---|
75 | # Effectively an atomic operation; rely on GIL to protect it. |
---|
76 | self.cancel = True |
---|
77 | # Abort the current function evaluation if possible. |
---|
78 | if hasattr(fitness,'abort'): self.fitness.abort() |
---|
79 | |
---|
80 | def _iscancelled(self): return self.cancel |
---|
81 | |
---|
82 | class MapMC(object): |
---|
83 | """ |
---|
84 | Evaluate a local fit at a particular start point. |
---|
85 | |
---|
86 | This is the function to be mapped across a set of start points for the |
---|
87 | monte carlo map-reduce implementation. |
---|
88 | |
---|
89 | See `park.pmap.Mapper` for required interface. |
---|
90 | """ |
---|
91 | def __init__(self, minimizer, fitness): |
---|
92 | self.minimizer, self.fitness = minimizer, fitness |
---|
93 | def __call__(self, x0): |
---|
94 | return self.minimizer.fit(self.fitness,x0) |
---|
95 | def abort(self): |
---|
96 | self.minimizer.abort() |
---|
97 | |
---|
98 | class CollectMC(object): |
---|
99 | """ |
---|
100 | Collect the results from multiple start points in a Monte Carlo fit engine. |
---|
101 | |
---|
102 | See `park.pmap.Collector` for required interface. |
---|
103 | """ |
---|
104 | def __init__(self, number_expected, handler): |
---|
105 | self.number_expected = number_expected |
---|
106 | """Number of starting points to check with local optimizer""" |
---|
107 | self.iterations = 0 |
---|
108 | self.best = None |
---|
109 | self.calls = 0 |
---|
110 | self.handler = handler |
---|
111 | self.handler.done = False |
---|
112 | def __call__(self, result): |
---|
113 | # Keep track of the amount of work done |
---|
114 | self.iterations += 1 |
---|
115 | self.calls += result.calls |
---|
116 | if self.best is None or result.fitness < self.best.fitness: |
---|
117 | self.best = result |
---|
118 | self.handler.result = result |
---|
119 | self.handler.improvement() |
---|
120 | # Progress should go after improvement in case the fit handler |
---|
121 | # wants to suppress intermediate improvements |
---|
122 | self.handler.progress(self.iterations, self.number_expected) |
---|
123 | def abort(self): |
---|
124 | self.handler.done = True |
---|
125 | self.handler.abort() |
---|
126 | def finalize(self): |
---|
127 | self.handler.result.calls = self.calls |
---|
128 | self.handler.done = True |
---|
129 | self.handler.finalize() |
---|
130 | def error(self, msg): |
---|
131 | self.handler.done = True |
---|
132 | self.handler.error(msg) |
---|
133 | |
---|
134 | def fitmc(fitness, x0, bounds, localfit, n, handler): |
---|
135 | """ |
---|
136 | Run a monte carlo fit. |
---|
137 | |
---|
138 | This procedure maps a local optimizer across a set of n initial points. |
---|
139 | The initial parameter value defined by the fitness parameters defines |
---|
140 | one initial point. The remainder are randomly generated within the |
---|
141 | bounds of the problem. |
---|
142 | |
---|
143 | localfit is the local optimizer to use. It should be a bounded |
---|
144 | optimizer following the `park.fitmc.LocalFit` interface. |
---|
145 | |
---|
146 | handler accepts updates to the current best set of fit parameters. |
---|
147 | See `park.fitresult.FitHandler` for details. |
---|
148 | """ |
---|
149 | # Generate random number within bounds. If bounds are indefinite, use [0,1] |
---|
150 | # If bounds are semi-definite, use [low,low+1] or [high-1,high], depending |
---|
151 | # on which limit is unbounded. |
---|
152 | lo,hi = bounds |
---|
153 | inf_lo = numpy.isinf(lo) |
---|
154 | inf_hi = numpy.isinf(hi) |
---|
155 | delta = hi-lo |
---|
156 | delta[inf_lo|inf_hi] = 1.0 |
---|
157 | lo[inf_lo] = hi[inf_lo] - 1.0 |
---|
158 | lo[inf_lo&inf_hi] = 0.0 |
---|
159 | P = numpy.random.rand(n,len(x0))*delta+lo |
---|
160 | #print "Population",P |
---|
161 | P[0] = x0 |
---|
162 | |
---|
163 | pmap.pmapreduce(MapMC(localfit,fitness), |
---|
164 | CollectMC(n,handler), |
---|
165 | P) |
---|
166 | |
---|
167 | class FitMC(fit.Fitter): |
---|
168 | """ |
---|
169 | Monte Carlo optimizer. |
---|
170 | |
---|
171 | This implements `park.fit.Fitter`. |
---|
172 | """ |
---|
173 | localfit = FitSimplex() |
---|
174 | start_points = 10 |
---|
175 | |
---|
176 | def _fit(self, objective, x0, bounds): |
---|
177 | """ |
---|
178 | Run a monte carlo fit. |
---|
179 | |
---|
180 | This procedure maps a local optimizer across a set of initial points. |
---|
181 | """ |
---|
182 | fitmc(objective, x0, bounds, self.localfit, |
---|
183 | self.start_points, self.handler) |
---|
184 | |
---|
185 | if __name__ == "__main__": |
---|
186 | fit.demo2(FitMC(localfit=FitSimplex(),start_points=10)) |
---|