1 | """Prototype plottable object support. |
---|
2 | |
---|
3 | The main point of this prototype is to provide a clean separation between |
---|
4 | the style (plotter details: color, grids, widgets, etc.) and substance |
---|
5 | (application details: which information to plot). Programmers should not be |
---|
6 | dictating line colours and plotting symbols. |
---|
7 | |
---|
8 | Unlike the problem of style in CSS or Word, where most paragraphs look |
---|
9 | the same, each line on a graph has to be distinguishable from its neighbours. |
---|
10 | Our solution is to provide parametric styles, in which a number of |
---|
11 | different classes of object (e.g., reflectometry data, reflectometry |
---|
12 | theory) representing multiple graph primitives cycle through a colour |
---|
13 | palette provided by the underlying plotter. |
---|
14 | |
---|
15 | A full treatment would provide perceptual dimensions of prominence and |
---|
16 | distinctiveness rather than a simple colour number. |
---|
17 | """ |
---|
18 | |
---|
19 | # Design question: who owns the color? |
---|
20 | # Is it a property of the plottable? |
---|
21 | # Or of the plottable as it exists on the graph? |
---|
22 | # Or if the graph? |
---|
23 | # If a plottable can appear on multiple graphs, in some case the |
---|
24 | # color should be the same on each graph in which it appears, and |
---|
25 | # in other cases (where multiple plottables from different graphs |
---|
26 | # coexist), the color should be assigned by the graph. In any case |
---|
27 | # once a plottable is placed on the graph its color should not |
---|
28 | # depend on the other plottables on the graph. Furthermore, if |
---|
29 | # a plottable is added and removed from a graph and added again, |
---|
30 | # it may be nice, but not necessary, to have the color persist. |
---|
31 | # |
---|
32 | # The safest approach seems to be to give ownership of color |
---|
33 | # to the graph, which will allocate the colors along with the |
---|
34 | # plottable. The plottable will need to return the number of |
---|
35 | # colors that are needed. |
---|
36 | # |
---|
37 | # The situation is less clear for symbols. It is less clear |
---|
38 | # how much the application requires that symbols be unique across |
---|
39 | # all plots on the graph. |
---|
40 | |
---|
41 | # Support for ancient python versions |
---|
42 | import copy |
---|
43 | import numpy |
---|
44 | import math |
---|
45 | |
---|
46 | if 'any' not in dir(__builtins__): |
---|
47 | def any(L): |
---|
48 | for cond in L: |
---|
49 | if cond: return True |
---|
50 | return False |
---|
51 | def all(L): |
---|
52 | for cond in L: |
---|
53 | if not cond: return False |
---|
54 | return True |
---|
55 | |
---|
56 | # Graph structure for holding multiple plottables |
---|
57 | class Graph: |
---|
58 | """ |
---|
59 | Generic plottables graph structure. |
---|
60 | |
---|
61 | Plot styles are based on color/symbol lists. The user gets to select |
---|
62 | the list of colors/symbols/sizes to choose from, not the application |
---|
63 | developer. The programmer only gets to add/remove lines from the |
---|
64 | plot and move to the next symbol/color. |
---|
65 | |
---|
66 | Another dimension is prominence, which refers to line sizes/point sizes. |
---|
67 | |
---|
68 | Axis transformations allow the user to select the coordinate view |
---|
69 | which provides clarity to the data. There is no way we can provide |
---|
70 | every possible transformation for every application generically, so |
---|
71 | the plottable objects themselves will need to provide the transformations. |
---|
72 | Here are some examples from reflectometry: |
---|
73 | independent: x -> f(x) |
---|
74 | monitor scaling: y -> M*y |
---|
75 | log: y -> log(y if y > min else min) |
---|
76 | cos: y -> cos(y*pi/180) |
---|
77 | dependent: x -> f(x,y) |
---|
78 | Q4: y -> y*x^4 |
---|
79 | fresnel: y -> y*fresnel(x) |
---|
80 | coordinated: x,y = f(x,y) |
---|
81 | Q: x -> 2*pi/L (cos(x*pi/180) - cos(y*pi/180)) |
---|
82 | y -> 2*pi/L (sin(x*pi/180) + sin(y*pi/180)) |
---|
83 | reducing: x,y = f(x1,x2,y1,y2) |
---|
84 | spin asymmetry: x -> x1, y -> (y1 - y2)/(y1 + y2) |
---|
85 | vector net: x -> x1, y -> y1*cos(y2*pi/180) |
---|
86 | Multiple transformations are possible, such as Q4 spin asymmetry |
---|
87 | |
---|
88 | Axes have further complications in that the units of what are being |
---|
89 | plotted should correspond to the units on the axes. Plotting multiple |
---|
90 | types on the same graph should be handled gracefully, e.g., by creating |
---|
91 | a separate tab for each available axis type, breaking into subplots, |
---|
92 | showing multiple axes on the same plot, or generating inset plots. |
---|
93 | Ultimately the decision should be left to the user. |
---|
94 | |
---|
95 | Graph properties such as grids/crosshairs should be under user control, |
---|
96 | as should the sizes of items such as axis fonts, etc. No direct |
---|
97 | access will be provided to the application. |
---|
98 | |
---|
99 | Axis limits are mostly under user control. If the user has zoomed or |
---|
100 | panned then those limits are preserved even if new data is plotted. |
---|
101 | The exception is when, e.g., scanning through a set of related lines |
---|
102 | in which the user may want to fix the limits so that user can compare |
---|
103 | the values directly. Another exception is when creating multiple |
---|
104 | graphs sharing the same limits, though this case may be important |
---|
105 | enough that it is handled by the graph widget itself. Axis limits |
---|
106 | will of course have to understand the effects of axis transformations. |
---|
107 | |
---|
108 | High level plottable objects may be composed of low level primitives. |
---|
109 | Operations such as legend/hide/show copy/paste, etc. need to operate |
---|
110 | on these primitives as a group. E.g., allowing the user to have a |
---|
111 | working canvas where they can drag lines they want to save and annotate |
---|
112 | them. |
---|
113 | |
---|
114 | Graphs need to be printable. A page layout program for entire plots |
---|
115 | would be nice. |
---|
116 | """ |
---|
117 | def xaxis(self,name,units): |
---|
118 | """Properties of the x axis. |
---|
119 | """ |
---|
120 | if self.prop["xunit"] and units != self.prop["xunit"]: |
---|
121 | pass |
---|
122 | #print "Plottable: how do we handle non-commensurate units" |
---|
123 | self.prop["xlabel"] = "%s (%s)"%(name,units) |
---|
124 | self.prop["xunit"] = units |
---|
125 | |
---|
126 | def yaxis(self,name,units): |
---|
127 | """Properties of the y axis. |
---|
128 | """ |
---|
129 | if self.prop["yunit"] and units != self.prop["yunit"]: |
---|
130 | pass |
---|
131 | #print "Plottable: how do we handle non-commensurate units" |
---|
132 | self.prop["ylabel"] = "%s (%s)"%(name,units) |
---|
133 | self.prop["yunit"] = units |
---|
134 | |
---|
135 | def title(self,name): |
---|
136 | """Graph title |
---|
137 | """ |
---|
138 | self.prop["title"] = name |
---|
139 | |
---|
140 | def get(self,key): |
---|
141 | """Get the graph properties""" |
---|
142 | if key=="color": |
---|
143 | return self.color |
---|
144 | elif key == "symbol": |
---|
145 | return self.symbol |
---|
146 | else: |
---|
147 | return self.prop[key] |
---|
148 | |
---|
149 | def set(self,**kw): |
---|
150 | """Set the graph properties""" |
---|
151 | for key in kw: |
---|
152 | if key == "color": |
---|
153 | self.color = kw[key]%len(self.colorlist) |
---|
154 | elif key == "symbol": |
---|
155 | self.symbol = kw[key]%len(self.symbollist) |
---|
156 | else: |
---|
157 | self.prop[key] = kw[key] |
---|
158 | |
---|
159 | def isPlotted(self, plottable): |
---|
160 | """Return True is the plottable is already on the graph""" |
---|
161 | if plottable in self.plottables: |
---|
162 | return True |
---|
163 | return False |
---|
164 | |
---|
165 | def add(self,plottable): |
---|
166 | """Add a new plottable to the graph""" |
---|
167 | # record the colour associated with the plottable |
---|
168 | if not plottable in self.plottables: |
---|
169 | self.plottables[plottable]=self.color |
---|
170 | self.color += plottable.colors() |
---|
171 | |
---|
172 | def changed(self): |
---|
173 | """Detect if any graphed plottables have changed""" |
---|
174 | return any([p.changed() for p in self.plottables]) |
---|
175 | |
---|
176 | def get_range(self): |
---|
177 | """ |
---|
178 | Return the range of all displayed plottables |
---|
179 | """ |
---|
180 | min = None |
---|
181 | max = None |
---|
182 | |
---|
183 | for p in self.plottables: |
---|
184 | if p.hidden==True: |
---|
185 | continue |
---|
186 | |
---|
187 | if not p.x==None: |
---|
188 | for x_i in p.x: |
---|
189 | if min==None or x_i<min: |
---|
190 | min = x_i |
---|
191 | if max==None or x_i>max: |
---|
192 | max = x_i |
---|
193 | |
---|
194 | return min, max |
---|
195 | |
---|
196 | def delete(self,plottable): |
---|
197 | """Remove an existing plottable from the graph""" |
---|
198 | if plottable in self.plottables: |
---|
199 | del self.plottables[plottable] |
---|
200 | if self.color > 0: |
---|
201 | self.color = self.color -1 |
---|
202 | else: |
---|
203 | self.color =0 |
---|
204 | |
---|
205 | def reset_scale(self): |
---|
206 | """ |
---|
207 | Resets the scale transformation data to the underlying data |
---|
208 | """ |
---|
209 | for p in self.plottables: |
---|
210 | p.reset_view() |
---|
211 | |
---|
212 | def reset(self): |
---|
213 | """Reset the graph.""" |
---|
214 | self.color = 0 |
---|
215 | self.symbol = 0 |
---|
216 | self.prop = {"xlabel":"", "xunit":None, |
---|
217 | "ylabel":"","yunit":None, |
---|
218 | "title":""} |
---|
219 | self.plottables = {} |
---|
220 | |
---|
221 | |
---|
222 | def _make_labels(self): |
---|
223 | # Find groups of related plottables |
---|
224 | sets = {} |
---|
225 | for p in self.plottables: |
---|
226 | if p.__class__ in sets: |
---|
227 | sets[p.__class__].append(p) |
---|
228 | else: |
---|
229 | sets[p.__class__] = [p] |
---|
230 | |
---|
231 | # Ask each plottable class for a set of unique labels |
---|
232 | labels = {} |
---|
233 | for c in sets: |
---|
234 | labels.update(c.labels(sets[c])) |
---|
235 | |
---|
236 | return labels |
---|
237 | |
---|
238 | def returnPlottable(self): |
---|
239 | """ |
---|
240 | This method returns a dictionary of plottables contained in graph |
---|
241 | It is just by Plotpanel to interact with the complete list of plottables |
---|
242 | inside the graph. |
---|
243 | """ |
---|
244 | return self.plottables |
---|
245 | |
---|
246 | def render(self,plot): |
---|
247 | """Redraw the graph""" |
---|
248 | plot.clear() |
---|
249 | plot.properties(self.prop) |
---|
250 | labels = self._make_labels() |
---|
251 | for p in self.plottables: |
---|
252 | p.render(plot,color=self.plottables[p],symbol=0,label=labels[p]) |
---|
253 | plot.render() |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | def __init__(self,**kw): |
---|
258 | self.reset() |
---|
259 | self.set(**kw) |
---|
260 | |
---|
261 | |
---|
262 | # Transform interface definition |
---|
263 | # No need to inherit from this class, just need to provide |
---|
264 | # the same methods. |
---|
265 | class Transform: |
---|
266 | """Define a transform plugin to the plottable architecture. |
---|
267 | |
---|
268 | Transforms operate on axes. The plottable defines the |
---|
269 | set of transforms available for it, and the axes on which |
---|
270 | they operate. These transforms can operate on the x axis |
---|
271 | only, the y axis only or on the x and y axes together. |
---|
272 | |
---|
273 | This infrastructure is not able to support transformations |
---|
274 | such as log and polar plots as these require full control |
---|
275 | over the drawing of axes and grids. |
---|
276 | |
---|
277 | A transform has a number of attributes. |
---|
278 | |
---|
279 | name: user visible name for the transform. This will |
---|
280 | appear in the context menu for the axis and the transform |
---|
281 | menu for the graph. |
---|
282 | type: operational axis. This determines whether the |
---|
283 | transform should appear on x,y or z axis context |
---|
284 | menus, or if it should appear in the context menu for |
---|
285 | the graph. |
---|
286 | inventory: (not implemented) |
---|
287 | a dictionary of user settable parameter names and |
---|
288 | their associated types. These should appear as keyword |
---|
289 | arguments to the transform call. For example, Fresnel |
---|
290 | reflectivity requires the substrate density: |
---|
291 | { 'rho': type.Value(10e-6/units.angstrom**2) } |
---|
292 | Supply reasonable defaults in the callback so that |
---|
293 | limited plotting clients work even though they cannot |
---|
294 | set the inventory. |
---|
295 | """ |
---|
296 | |
---|
297 | def __call__(self,plottable,**kwargs): |
---|
298 | """Transform the data. Whenever a plottable is added |
---|
299 | to the axes, the infrastructure will apply all required |
---|
300 | transforms. When the user selects a different representation |
---|
301 | for the axes (via menu, script, or context menu), all |
---|
302 | plottables on the axes will be transformed. The |
---|
303 | plottable should store the underlying data but set |
---|
304 | the standard x,dx,y,dy,z,dz attributes appropriately. |
---|
305 | |
---|
306 | If the call raises a NotImplemented error the dataline |
---|
307 | will not be plotted. The associated string will usually |
---|
308 | be 'Not a valid transform', though other strings are possible. |
---|
309 | The application may or may not display the message to the |
---|
310 | user, along with an indication of which plottable was at fault. |
---|
311 | """ |
---|
312 | raise NotImplemented,"Not a valid transform" |
---|
313 | |
---|
314 | # Related issues |
---|
315 | # ============== |
---|
316 | # |
---|
317 | # log scale: |
---|
318 | # All axes have implicit log/linear scaling options. |
---|
319 | # |
---|
320 | # normalization: |
---|
321 | # Want to display raw counts vs detector efficiency correction |
---|
322 | # Want to normalize by time/monitor/proton current/intensity. |
---|
323 | # Want to display by eg. counts per 3 sec or counts per 10000 monitor. |
---|
324 | # Want to divide by footprint (ab initio, fitted or measured). |
---|
325 | # Want to scale by attenuator values. |
---|
326 | # |
---|
327 | # compare/contrast: |
---|
328 | # Want to average all visible lines with the same tag, and |
---|
329 | # display difference from one particular line. Not a transform |
---|
330 | # issue? |
---|
331 | # |
---|
332 | # multiline graph: |
---|
333 | # How do we show/hide data parts. E.g., data or theory, or |
---|
334 | # different polarization cross sections? One way is with |
---|
335 | # tags: each plottable has a set of tags and the tags are |
---|
336 | # listed as check boxes above the plotting area. Click a |
---|
337 | # tag and all plottables with that tag are hidden on the |
---|
338 | # plot and on the legend. |
---|
339 | # |
---|
340 | # nonconformant y-axes: |
---|
341 | # What do we do with temperature vs. Q and reflectivity vs. Q |
---|
342 | # on the same graph? |
---|
343 | # |
---|
344 | # 2D -> 1D: |
---|
345 | # Want various slices through the data. Do transforms apply |
---|
346 | # to the sliced data as well? |
---|
347 | |
---|
348 | |
---|
349 | class Plottable(object): |
---|
350 | |
---|
351 | # Short ascii name to refer to the plottable in a menu |
---|
352 | short_name = None |
---|
353 | |
---|
354 | # Data |
---|
355 | x = None |
---|
356 | y = None |
---|
357 | dx = None |
---|
358 | dy = None |
---|
359 | |
---|
360 | # Parameter to allow a plot to be part of the list without being displayed |
---|
361 | hidden = False |
---|
362 | |
---|
363 | def __setattr__(self, name, value): |
---|
364 | """ |
---|
365 | Take care of changes in View when data is changed. |
---|
366 | This method is provided for backward compatibility. |
---|
367 | """ |
---|
368 | object.__setattr__(self, name, value) |
---|
369 | |
---|
370 | if name in ['x', 'y', 'dx', 'dy']: |
---|
371 | self.reset_view() |
---|
372 | #print "self.%s has been called" % name |
---|
373 | |
---|
374 | def set_data(self, x, y, dx=None, dy=None): |
---|
375 | self.x = x |
---|
376 | self.y = y |
---|
377 | self.dy = dy |
---|
378 | self.dx = dx |
---|
379 | self.transformView() |
---|
380 | |
---|
381 | def xaxis(self, name, units): |
---|
382 | """ |
---|
383 | Set the name and unit of x_axis |
---|
384 | @param name: the name of x-axis |
---|
385 | @param units : the units of x_axis |
---|
386 | """ |
---|
387 | self._xaxis = name |
---|
388 | self._xunit = units |
---|
389 | |
---|
390 | def yaxis(self, name, units): |
---|
391 | """ |
---|
392 | Set the name and unit of y_axis |
---|
393 | @param name: the name of y-axis |
---|
394 | @param units : the units of y_axis |
---|
395 | """ |
---|
396 | self._yaxis = name |
---|
397 | self._yunit = units |
---|
398 | |
---|
399 | def get_xaxis(self): |
---|
400 | """ Return the units and name of x-axis""" |
---|
401 | return self._xaxis, self._xunit |
---|
402 | |
---|
403 | def get_yaxis(self): |
---|
404 | """ Return the units and name of y- axis""" |
---|
405 | return self._yaxis, self._yunit |
---|
406 | |
---|
407 | @classmethod |
---|
408 | def labels(cls,collection): |
---|
409 | """ |
---|
410 | Construct a set of unique labels for a collection of plottables of |
---|
411 | the same type. |
---|
412 | |
---|
413 | Returns a map from plottable to name. |
---|
414 | """ |
---|
415 | n = len(collection) |
---|
416 | map = {} |
---|
417 | if n > 0: |
---|
418 | basename = str(cls).split('.')[-1] |
---|
419 | if n == 1: |
---|
420 | map[collection[0]] = basename |
---|
421 | else: |
---|
422 | for i in xrange(len(collection)): |
---|
423 | map[collection[i]] = "%s %d"%(basename,i) |
---|
424 | return map |
---|
425 | ##Use the following if @classmethod doesn't work |
---|
426 | # labels = classmethod(labels) |
---|
427 | def setLabel(self,labelx,labely): |
---|
428 | """ |
---|
429 | It takes a label of the x and y transformation and set View parameters |
---|
430 | @param transx: The label of x transformation is sent by Properties Dialog |
---|
431 | @param transy: The label of y transformation is sent Properties Dialog |
---|
432 | """ |
---|
433 | self.view.xLabel= labelx |
---|
434 | self.view.yLabel = labely |
---|
435 | |
---|
436 | def __init__(self): |
---|
437 | self.view = View() |
---|
438 | self._xaxis = "" |
---|
439 | self._xunit = "" |
---|
440 | self._yaxis = "" |
---|
441 | self._yunit = "" |
---|
442 | |
---|
443 | |
---|
444 | def set_View(self,x,y): |
---|
445 | """ Load View """ |
---|
446 | self.x= x |
---|
447 | self.y = y |
---|
448 | self.reset_view() |
---|
449 | |
---|
450 | def reset_view(self): |
---|
451 | """ Reload view with new value to plot""" |
---|
452 | self.view = self.View(self.x, self.y, self.dx, self.dy) |
---|
453 | self.view.Xreel = self.view.x |
---|
454 | self.view.Yreel = self.view.y |
---|
455 | self.view.DXreel = self.view.dx |
---|
456 | self.view.DYreel = self.view.dy |
---|
457 | def render(self,plot): |
---|
458 | """The base class makes sure the correct units are being used for |
---|
459 | subsequent plottable. |
---|
460 | |
---|
461 | For now it is assumed that the graphs are commensurate, and if you |
---|
462 | put a Qx object on a Temperature graph then you had better hope |
---|
463 | that it makes sense. |
---|
464 | """ |
---|
465 | |
---|
466 | plot.xaxis(self._xaxis, self._xunit) |
---|
467 | plot.yaxis(self._yaxis, self._yunit) |
---|
468 | |
---|
469 | def is_empty(self): |
---|
470 | """ |
---|
471 | Returns True if there is no data stored in the plottable |
---|
472 | """ |
---|
473 | if not self.x==None and len(self.x)==0 \ |
---|
474 | and not self.y==None and len(self.y)==0: |
---|
475 | return True |
---|
476 | return False |
---|
477 | |
---|
478 | |
---|
479 | def colors(self): |
---|
480 | """Return the number of colors need to render the object""" |
---|
481 | return 1 |
---|
482 | |
---|
483 | def transformView(self): |
---|
484 | """ |
---|
485 | It transforms x, y before displaying |
---|
486 | """ |
---|
487 | self.view.transform( self.x, self.y, self.dx,self.dy) |
---|
488 | |
---|
489 | def returnValuesOfView(self): |
---|
490 | """ |
---|
491 | Return View parameters and it is used by Fit Dialog |
---|
492 | """ |
---|
493 | return self.view.returnXview() |
---|
494 | |
---|
495 | def check_data_PlottableX(self): |
---|
496 | """ |
---|
497 | Since no transformation is made for log10(x), check that |
---|
498 | no negative values is plot in log scale |
---|
499 | """ |
---|
500 | self.view.check_data_logX() |
---|
501 | |
---|
502 | def check_data_PlottableY(self): |
---|
503 | """ |
---|
504 | Since no transformation is made for log10(y), check that |
---|
505 | no negative values is plot in log scale |
---|
506 | """ |
---|
507 | self.view.check_data_logY() |
---|
508 | |
---|
509 | def transformX(self,transx,transdx): |
---|
510 | """ |
---|
511 | Receive pointers to function that transform x and dx |
---|
512 | and set corresponding View pointers |
---|
513 | @param transx: pointer to function that transforms x |
---|
514 | @param transdx: pointer to function that transforms dx |
---|
515 | """ |
---|
516 | self.view.setTransformX(transx,transdx) |
---|
517 | |
---|
518 | def transformY(self,transy,transdy): |
---|
519 | """ |
---|
520 | Receive pointers to function that transform y and dy |
---|
521 | and set corresponding View pointers |
---|
522 | @param transy: pointer to function that transforms y |
---|
523 | @param transdy: pointer to function that transforms dy |
---|
524 | """ |
---|
525 | self.view.setTransformY(transy,transdy) |
---|
526 | |
---|
527 | def onReset(self): |
---|
528 | """ |
---|
529 | Reset x, y, dx, dy view with its parameters |
---|
530 | """ |
---|
531 | self.view.onResetView() |
---|
532 | |
---|
533 | def onFitRange(self,xmin=None,xmax=None): |
---|
534 | """ |
---|
535 | It limits View data range to plot from min to max |
---|
536 | @param xmin: the minimum value of x to plot. |
---|
537 | @param xmax: the maximum value of x to plot |
---|
538 | """ |
---|
539 | self.view.onFitRangeView(xmin,xmax) |
---|
540 | |
---|
541 | class View: |
---|
542 | """ |
---|
543 | Representation of the data that might include a transformation |
---|
544 | """ |
---|
545 | x = None |
---|
546 | y = None |
---|
547 | dx = None |
---|
548 | dy = None |
---|
549 | |
---|
550 | |
---|
551 | def __init__(self, x=None, y=None, dx=None, dy=None): |
---|
552 | self.x = x |
---|
553 | self.y = y |
---|
554 | self.dx = dx |
---|
555 | self.dy = dy |
---|
556 | # To change x range to the reel range |
---|
557 | self.Xreel = self.x |
---|
558 | self.Yreel = self.y |
---|
559 | self.DXreel = self.dx |
---|
560 | self.DYreel = self.dy |
---|
561 | # Labels of x and y received from Properties Dialog |
---|
562 | self.xLabel ="" |
---|
563 | self.yLabel ="" |
---|
564 | # Function to transform x, y, dx and dy |
---|
565 | self.funcx= None |
---|
566 | self.funcy= None |
---|
567 | self.funcdx= None |
---|
568 | self.funcdy= None |
---|
569 | |
---|
570 | def transform(self, x=None,y=None,dx=None, dy=None): |
---|
571 | """ |
---|
572 | Transforms the x,y,dx and dy vectors and stores the output in View parameters |
---|
573 | |
---|
574 | @param x: array of x values |
---|
575 | @param y: array of y values |
---|
576 | @param dx: array of errors values on x |
---|
577 | @param dy: array of error values on y |
---|
578 | """ |
---|
579 | |
---|
580 | # Sanity check |
---|
581 | # Do the transofrmation only when x and y are empty |
---|
582 | has_err_x = not (dx==None or len(dx)==0) |
---|
583 | has_err_y = not (dy==None or len(dy)==0) |
---|
584 | |
---|
585 | if (x!=None) and (y!=None): |
---|
586 | if not dx==None and not len(dx)==0 and not len(x)==len(dx): |
---|
587 | raise ValueError, "Plottable.View: Given x and dx are not of the same length" |
---|
588 | # Check length of y array |
---|
589 | if not len(y)==len(x): |
---|
590 | raise ValueError, "Plottable.View: Given y and x are not of the same length" |
---|
591 | |
---|
592 | if not dy==None and not len(dy)==0 and not len(y)==len(dy): |
---|
593 | message = "Plottable.View: Given y and dy are not of the same length: len(y)=%s, len(dy)=%s" %(len(y), len(dy)) |
---|
594 | raise ValueError, message |
---|
595 | |
---|
596 | |
---|
597 | self.x = [] |
---|
598 | self.y = [] |
---|
599 | if has_err_x: |
---|
600 | self.dx = [] |
---|
601 | else: |
---|
602 | self.dx = None |
---|
603 | if has_err_y: |
---|
604 | self.dy = [] |
---|
605 | else: |
---|
606 | self.dy = None |
---|
607 | tempx=[] |
---|
608 | tempy=[] |
---|
609 | |
---|
610 | if not has_err_x: |
---|
611 | dx=numpy.zeros(len(x)) |
---|
612 | if not has_err_y: |
---|
613 | dy=numpy.zeros(len(y)) |
---|
614 | |
---|
615 | for i in range(len(x)): |
---|
616 | try: |
---|
617 | tempx =self.funcx(x[i],y[i]) |
---|
618 | tempy =self.funcy(y[i],x[i]) |
---|
619 | if has_err_x: |
---|
620 | tempdx = self.funcdx(x[i], y[i], dx[i], dy[i]) |
---|
621 | if has_err_y: |
---|
622 | tempdy = self.funcdy(y[i], x[i], dy[i], dx[i]) |
---|
623 | |
---|
624 | self.x.append(tempx) |
---|
625 | self.y.append(tempy) |
---|
626 | if has_err_x: |
---|
627 | self.dx.append(tempdx) |
---|
628 | if has_err_y: |
---|
629 | self.dy.append(tempdy) |
---|
630 | except: |
---|
631 | tempx=x[i] |
---|
632 | tempy=y[i] |
---|
633 | print "View.transform: skipping point x=%g y=%g" % (x[i], y[i]) |
---|
634 | |
---|
635 | print sys.exc_value |
---|
636 | |
---|
637 | # Sanity check |
---|
638 | if not len(self.x)==len(self.y): |
---|
639 | raise ValueError, "Plottable.View: transformed x and y are not of the same length" |
---|
640 | if has_err_x and not (len(self.x) and len(self.dx)): |
---|
641 | raise ValueError, "Plottable.View: transformed x and dx are not of the same length" |
---|
642 | if has_err_y and not (len(self.y) and len(self.dy)): |
---|
643 | raise ValueError, "Plottable.View: transformed y and dy are not of the same length" |
---|
644 | |
---|
645 | # Check that negative values are not plot on x and y axis for log10 transformation |
---|
646 | self.check_data_logX() |
---|
647 | self.check_data_logY() |
---|
648 | # Store x ,y dx,and dy in their full range for reset |
---|
649 | self.Xreel = self.x |
---|
650 | self.Yreel = self.y |
---|
651 | self.DXreel = self.dx |
---|
652 | self.DYreel = self.dy |
---|
653 | |
---|
654 | |
---|
655 | def onResetView(self): |
---|
656 | """ |
---|
657 | Reset x,y,dx and y in their full range and in the initial scale |
---|
658 | in case their previous range has changed |
---|
659 | """ |
---|
660 | self.x = self.Xreel |
---|
661 | self.y = self.Yreel |
---|
662 | self.dx = self.DXreel |
---|
663 | self.dy = self.DYreel |
---|
664 | |
---|
665 | def setTransformX(self,funcx,funcdx): |
---|
666 | """ |
---|
667 | Receive pointers to function that transform x and dx |
---|
668 | and set corresponding View pointers |
---|
669 | @param transx: pointer to function that transforms x |
---|
670 | @param transdx: pointer to function that transforms dx |
---|
671 | """ |
---|
672 | self.funcx= funcx |
---|
673 | self.funcdx= funcdx |
---|
674 | |
---|
675 | def setTransformY(self,funcy,funcdy): |
---|
676 | """ |
---|
677 | Receive pointers to function that transform y and dy |
---|
678 | and set corresponding View pointers |
---|
679 | @param transx: pointer to function that transforms y |
---|
680 | @param transdx: pointer to function that transforms dy |
---|
681 | """ |
---|
682 | self.funcy= funcy |
---|
683 | self.funcdy= funcdy |
---|
684 | |
---|
685 | def returnXview(self): |
---|
686 | """ |
---|
687 | Return View x,y,dx,dy |
---|
688 | """ |
---|
689 | return self.x,self.y,self.dx,self.dy |
---|
690 | |
---|
691 | |
---|
692 | def check_data_logX(self): |
---|
693 | """ |
---|
694 | Remove negative value in x vector |
---|
695 | to avoid plotting negative value of Log10 |
---|
696 | """ |
---|
697 | tempx=[] |
---|
698 | tempdx=[] |
---|
699 | tempy=[] |
---|
700 | tempdy=[] |
---|
701 | if self.dx==None: |
---|
702 | self.dx=numpy.zeros(len(self.x)) |
---|
703 | if self.dy==None: |
---|
704 | self.dy=numpy.zeros(len(self.y)) |
---|
705 | if self.xLabel=="log10(x)" : |
---|
706 | for i in range(len(self.x)): |
---|
707 | try: |
---|
708 | if (self.x[i]> 0): |
---|
709 | |
---|
710 | tempx.append(self.x[i]) |
---|
711 | tempdx.append(self.dx[i]) |
---|
712 | tempy.append(self.y[i]) |
---|
713 | tempdy.append(self.dy[i]) |
---|
714 | except: |
---|
715 | print "check_data_logX: skipping point x %g" %self.x[i] |
---|
716 | print sys.exc_value |
---|
717 | pass |
---|
718 | |
---|
719 | self.x = tempx |
---|
720 | self.y = tempy |
---|
721 | self.dx = tempdx |
---|
722 | self.dy = tempdy |
---|
723 | |
---|
724 | def check_data_logY(self): |
---|
725 | """ |
---|
726 | Remove negative value in y vector |
---|
727 | to avoid plotting negative value of Log10 |
---|
728 | """ |
---|
729 | tempx=[] |
---|
730 | tempdx=[] |
---|
731 | tempy=[] |
---|
732 | tempdy=[] |
---|
733 | if self.dx==None: |
---|
734 | self.dx=numpy.zeros(len(self.x)) |
---|
735 | if self.dy==None: |
---|
736 | self.dy=numpy.zeros(len(self.y)) |
---|
737 | if (self.yLabel == "log10(y)" ): |
---|
738 | for i in range(len(self.x)): |
---|
739 | try: |
---|
740 | if (self.y[i]> 0): |
---|
741 | tempx.append(self.x[i]) |
---|
742 | tempdx.append(self.dx[i]) |
---|
743 | tempy.append(self.y[i]) |
---|
744 | tempdy.append(self.dy[i]) |
---|
745 | except: |
---|
746 | print "check_data_logY: skipping point %g" %self.y[i] |
---|
747 | print sys.exc_value |
---|
748 | pass |
---|
749 | |
---|
750 | self.x = tempx |
---|
751 | self.y = tempy |
---|
752 | self.dx = tempdx |
---|
753 | self.dy = tempdy |
---|
754 | |
---|
755 | def onFitRangeView(self,xmin=None,xmax=None): |
---|
756 | """ |
---|
757 | It limits View data range to plot from min to max |
---|
758 | @param xmin: the minimum value of x to plot. |
---|
759 | @param xmax: the maximum value of x to plot |
---|
760 | """ |
---|
761 | tempx=[] |
---|
762 | tempdx=[] |
---|
763 | tempy=[] |
---|
764 | tempdy=[] |
---|
765 | if self.dx==None: |
---|
766 | self.dx=numpy.zeros(len(self.x)) |
---|
767 | if self.dy==None: |
---|
768 | self.dy=numpy.zeros(len(self.y)) |
---|
769 | if ( xmin != None ) and ( xmax != None ): |
---|
770 | for i in range(len(self.x)): |
---|
771 | if ( self.x[i] >= xmin ) and ( self.x[i] <= xmax ): |
---|
772 | tempx.append(self.x[i]) |
---|
773 | tempdx.append(self.dx[i]) |
---|
774 | tempy.append(self.y[i]) |
---|
775 | tempdy.append(self.dy[i]) |
---|
776 | self.x=tempx |
---|
777 | self.y=tempy |
---|
778 | self.dx=tempdx |
---|
779 | self.dy=tempdy |
---|
780 | |
---|
781 | class Data1D(Plottable): |
---|
782 | """Data plottable: scatter plot of x,y with errors in x and y. |
---|
783 | """ |
---|
784 | |
---|
785 | def __init__(self,x,y,dx=None,dy=None): |
---|
786 | """Draw points specified by x[i],y[i] in the current color/symbol. |
---|
787 | Uncertainty in x is given by dx[i], or by (xlo[i],xhi[i]) if the |
---|
788 | uncertainty is asymmetric. Similarly for y uncertainty. |
---|
789 | |
---|
790 | The title appears on the legend. |
---|
791 | The label, if it is different, appears on the status bar. |
---|
792 | """ |
---|
793 | self.name = "data" |
---|
794 | self.x = x |
---|
795 | self.y = y |
---|
796 | self.dx = dx |
---|
797 | self.dy = dy |
---|
798 | self.xaxis( '', '') |
---|
799 | self.yaxis( '', '') |
---|
800 | self.view = self.View(self.x, self.y, self.dx, self.dy) |
---|
801 | |
---|
802 | def render(self,plot,**kw): |
---|
803 | plot.points(self.view.x,self.view.y,dx=self.view.dx,dy=self.view.dy,**kw) |
---|
804 | |
---|
805 | |
---|
806 | def changed(self): |
---|
807 | return False |
---|
808 | |
---|
809 | @classmethod |
---|
810 | def labels(cls, collection): |
---|
811 | """Build a label mostly unique within a collection""" |
---|
812 | map = {} |
---|
813 | for item in collection: |
---|
814 | #map[item] = label(item, collection) |
---|
815 | map[item] = r"$\rm{%s}$" % item.name |
---|
816 | return map |
---|
817 | |
---|
818 | class Theory1D(Plottable): |
---|
819 | """Theory plottable: line plot of x,y with confidence interval y. |
---|
820 | """ |
---|
821 | def __init__(self,x,y,dy=None): |
---|
822 | """Draw lines specified in x[i],y[i] in the current color/symbol. |
---|
823 | Confidence intervals in x are given by dx[i] or by (xlo[i],xhi[i]) |
---|
824 | if the limits are asymmetric. |
---|
825 | |
---|
826 | The title is the name that will show up on the legend. |
---|
827 | """ |
---|
828 | self.name= "theory" |
---|
829 | self.x = x |
---|
830 | self.y = y |
---|
831 | self.dy = dy |
---|
832 | self.xaxis( '', '') |
---|
833 | self.yaxis( '', '') |
---|
834 | self.view = self.View(self.x, self.y, None, self.dy) |
---|
835 | |
---|
836 | def render(self,plot,**kw): |
---|
837 | plot.curve(self.view.x,self.view.y,dy=self.view.dy,**kw) |
---|
838 | |
---|
839 | def changed(self): |
---|
840 | return False |
---|
841 | |
---|
842 | @classmethod |
---|
843 | def labels(cls, collection): |
---|
844 | """Build a label mostly unique within a collection""" |
---|
845 | map = {} |
---|
846 | for item in collection: |
---|
847 | #map[item] = label(item, collection) |
---|
848 | map[item] = r"$\rm{%s}$" % item.name |
---|
849 | return map |
---|
850 | |
---|
851 | |
---|
852 | class Fit1D(Plottable): |
---|
853 | """Fit plottable: composed of a data line plus a theory line. This |
---|
854 | is treated like a single object from the perspective of the graph, |
---|
855 | except that it will have two legend entries, one for the data and |
---|
856 | one for the theory. |
---|
857 | |
---|
858 | The color of the data and theory will be shared.""" |
---|
859 | |
---|
860 | def __init__(self,data=None,theory=None): |
---|
861 | self.data=data |
---|
862 | self.theory=theory |
---|
863 | |
---|
864 | def render(self,plot,**kw): |
---|
865 | self.data.render(plot,**kw) |
---|
866 | self.theory.render(plot,**kw) |
---|
867 | |
---|
868 | def changed(self): |
---|
869 | return self.data.changed() or self.theory.changed() |
---|
870 | |
---|
871 | ###################################################### |
---|
872 | |
---|
873 | def sample_graph(): |
---|
874 | import numpy as nx |
---|
875 | |
---|
876 | # Construct a simple graph |
---|
877 | if False: |
---|
878 | x = nx.array([1,2,3,4,5,6],'d') |
---|
879 | y = nx.array([4,5,6,5,4,5],'d') |
---|
880 | dy = nx.array([0.2, 0.3, 0.1, 0.2, 0.9, 0.3]) |
---|
881 | else: |
---|
882 | x = nx.linspace(0,1.,10000) |
---|
883 | y = nx.sin(2*nx.pi*x*2.8) |
---|
884 | dy = nx.sqrt(100*nx.abs(y))/100 |
---|
885 | data = Data1D(x,y,dy=dy) |
---|
886 | data.xaxis('distance', 'm') |
---|
887 | data.yaxis('time', 's') |
---|
888 | graph = Graph() |
---|
889 | graph.title('Walking Results') |
---|
890 | graph.add(data) |
---|
891 | graph.add(Theory1D(x,y,dy=dy)) |
---|
892 | |
---|
893 | return graph |
---|
894 | |
---|
895 | def demo_plotter(graph): |
---|
896 | import wx |
---|
897 | #from pylab_plottables import Plotter |
---|
898 | from mplplotter import Plotter |
---|
899 | |
---|
900 | # Make a frame to show it |
---|
901 | app = wx.PySimpleApp() |
---|
902 | frame = wx.Frame(None,-1,'Plottables') |
---|
903 | plotter = Plotter(frame) |
---|
904 | frame.Show() |
---|
905 | |
---|
906 | # render the graph to the pylab plotter |
---|
907 | graph.render(plotter) |
---|
908 | |
---|
909 | class GraphUpdate: |
---|
910 | callnum=0 |
---|
911 | def __init__(self,graph,plotter): |
---|
912 | self.graph,self.plotter = graph,plotter |
---|
913 | def __call__(self): |
---|
914 | if self.graph.changed(): |
---|
915 | self.graph.render(self.plotter) |
---|
916 | return True |
---|
917 | return False |
---|
918 | def onIdle(self,event): |
---|
919 | #print "On Idle checker %d"%(self.callnum) |
---|
920 | self.callnum = self.callnum+1 |
---|
921 | if self.__call__(): |
---|
922 | pass # event.RequestMore() |
---|
923 | update = GraphUpdate(graph,plotter) |
---|
924 | frame.Bind(wx.EVT_IDLE,update.onIdle) |
---|
925 | app.MainLoop() |
---|
926 | |
---|
927 | import sys; print sys.version |
---|
928 | if __name__ == "__main__": |
---|
929 | demo_plotter(sample_graph()) |
---|
930 | |
---|