source: sasview/guitools/plottables.py @ 8e4516f

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 8e4516f was 8e4516f, checked in by Mathieu Doucet <doucetm@…>, 16 years ago

Undid change that didn't make sense

  • Property mode set to 100644
File size: 19.5 KB
Line 
1"""Prototype plottable object support.
2
3The main point of this prototype is to provide a clean separation between
4the style (plotter details: color, grids, widgets, etc.) and substance
5(application details: which information to plot).  Programmers should not be
6dictating line colours and plotting symbols.
7
8Unlike the problem of style in CSS or Word, where most paragraphs look
9the same, each line on a graph has to be distinguishable from its neighbours.
10Our solution is to provide parametric styles, in which a number of
11different classes of object (e.g., reflectometry data, reflectometry
12theory) representing multiple graph primitives cycle through a colour
13palette provided by the underlying plotter.
14
15A full treatment would provide perceptual dimensions of prominence and
16distinctiveness rather than a simple colour number.
17"""
18
19# Design question: who owns the color?
20# Is it a property of the plottable?
21# Or of the plottable as it exists on the graph?
22# Or if the graph?
23# If a plottable can appear on multiple graphs, in some case the
24# color should be the same on each graph in which it appears, and
25# in other cases (where multiple plottables from different graphs
26# coexist), the color should be assigned by the graph.  In any case
27# once a plottable is placed on the graph its color should not
28# depend on the other plottables on the graph.  Furthermore, if
29# a plottable is added and removed from a graph and added again,
30# it may be nice, but not necessary, to have the color persist.
31#
32# The safest approach seems to be to give ownership of color
33# to the graph, which will allocate the colors along with the
34# plottable.  The plottable will need to return the number of
35# colors that are needed.
36#
37# The situation is less clear for symbols.  It is less clear
38# how much the application requires that symbols be unique across
39# all plots on the graph.
40
41# Support for ancient python versions
42if 'any' not in dir(__builtins__):
43    def any(L):
44        for cond in L:
45            if cond: return True
46        return False
47    def all(L):
48        for cond in L:
49            if not cond: return False
50        return True
51
52# Graph structure for holding multiple plottables
53class Graph:
54    """
55    Generic plottables graph structure.
56   
57    Plot styles are based on color/symbol lists.  The user gets to select
58    the list of colors/symbols/sizes to choose from, not the application
59    developer.  The programmer only gets to add/remove lines from the
60    plot and move to the next symbol/color.
61
62    Another dimension is prominence, which refers to line sizes/point sizes.
63
64    Axis transformations allow the user to select the coordinate view
65    which provides clarity to the data.  There is no way we can provide
66    every possible transformation for every application generically, so
67    the plottable objects themselves will need to provide the transformations.
68    Here are some examples from reflectometry:
69       independent: x -> f(x)
70          monitor scaling: y -> M*y
71          log:  y -> log(y if y > min else min)
72          cos:  y -> cos(y*pi/180)
73       dependent:   x -> f(x,y)
74          Q4:      y -> y*x^4
75          fresnel: y -> y*fresnel(x)
76       coordinated: x,y = f(x,y)
77          Q:    x -> 2*pi/L (cos(x*pi/180) - cos(y*pi/180))
78                y -> 2*pi/L (sin(x*pi/180) + sin(y*pi/180))
79       reducing: x,y = f(x1,x2,y1,y2)
80          spin asymmetry: x -> x1, y -> (y1 - y2)/(y1 + y2)
81          vector net: x -> x1, y -> y1*cos(y2*pi/180)
82    Multiple transformations are possible, such as Q4 spin asymmetry
83
84    Axes have further complications in that the units of what are being
85    plotted should correspond to the units on the axes.  Plotting multiple
86    types on the same graph should be handled gracefully, e.g., by creating
87    a separate tab for each available axis type, breaking into subplots,
88    showing multiple axes on the same plot, or generating inset plots.
89    Ultimately the decision should be left to the user.
90
91    Graph properties such as grids/crosshairs should be under user control,
92    as should the sizes of items such as axis fonts, etc.  No direct
93    access will be provided to the application.
94
95    Axis limits are mostly under user control.  If the user has zoomed or
96    panned then those limits are preserved even if new data is plotted.
97    The exception is when, e.g., scanning through a set of related lines
98    in which the user may want to fix the limits so that user can compare
99    the values directly.  Another exception is when creating multiple
100    graphs sharing the same limits, though this case may be important
101    enough that it is handled by the graph widget itself.  Axis limits
102    will of course have to understand the effects of axis transformations.
103
104    High level plottable objects may be composed of low level primitives.
105    Operations such as legend/hide/show copy/paste, etc. need to operate
106    on these primitives as a group.  E.g., allowing the user to have a
107    working canvas where they can drag lines they want to save and annotate
108    them.
109
110    Graphs need to be printable.  A page layout program for entire plots
111    would be nice.
112    """
113    def xaxis(self,name,units):
114        """Properties of the x axis.
115        """
116        if self.prop["xunit"] and units != self.prop["xunit"]:
117            pass
118            #print "Plottable: how do we handle non-commensurate units"
119        self.prop["xlabel"] = "%s (%s)"%(name,units)
120        self.prop["xunit"] = units
121
122    def yaxis(self,name,units):
123        """Properties of the y axis.
124        """
125        if self.prop["yunit"] and units != self.prop["yunit"]:
126            pass
127            #print "Plottable: how do we handle non-commensurate units"
128        self.prop["ylabel"] = "%s (%s)"%(name,units)
129        self.prop["yunit"] = units
130       
131    def title(self,name):
132        """Graph title
133        """
134        self.prop["title"] = name
135       
136    def get(self,key):
137        """Get the graph properties"""
138        if key=="color":
139            return self.color
140        elif key == "symbol":
141            return self.symbol
142        else:
143            return self.prop[key]
144
145    def set(self,**kw):
146        """Set the graph properties"""
147        for key in kw:
148            if key == "color":
149                self.color = kw[key]%len(self.colorlist)
150            elif key == "symbol":
151                self.symbol = kw[key]%len(self.symbollist)
152            else:
153                self.prop[key] = kw[key]
154
155    def isPlotted(self, plottable):
156        """Return True is the plottable is already on the graph"""
157        if plottable in self.plottables:
158            return True
159        return False 
160       
161    def add(self,plottable):
162        """Add a new plottable to the graph"""
163        # record the colour associated with the plottable
164        if not plottable in self.plottables:         
165            self.plottables[plottable]=self.color
166            self.color += plottable.colors()
167       
168    def changed(self):
169        """Detect if any graphed plottables have changed"""
170        return any([p.changed() for p in self.plottables])
171
172    def delete(self,plottable):
173        """Remove an existing plottable from the graph"""
174        if plottable in self.plottables:
175            del self.plottables[plottable]
176
177    def reset(self):
178        """Reset the graph."""
179        self.color = 0
180        self.symbol = 0
181        self.prop = {"xlabel":"", "xunit":None,
182                     "ylabel":"","yunit":None,
183                     "title":""}
184        self.plottables = {}
185
186    def _make_labels(self):
187        # Find groups of related plottables
188        sets = {}
189        for p in self.plottables:
190            if p.__class__ in sets:
191                sets[p.__class__].append(p)
192            else:
193                sets[p.__class__] = [p]
194               
195        # Ask each plottable class for a set of unique labels
196        labels = {}
197        for c in sets:
198            labels.update(c.labels(sets[c]))
199       
200        return labels
201    def returnPlottable(self):
202        return self.plottables
203
204    def render(self,plot):
205        """Redraw the graph"""
206        plot.clear()
207        plot.properties(self.prop)
208        labels = self._make_labels()
209        for p in self.plottables:
210            p.render(plot,color=self.plottables[p],symbol=0,label=labels[p])
211        plot.render()
212
213    def __init__(self,**kw):
214        self.reset()
215        self.set(**kw)
216
217
218# Transform interface definition
219# No need to inherit from this class, just need to provide
220# the same methods.
221class Transform:
222    """Define a transform plugin to the plottable architecture.
223   
224    Transforms operate on axes.  The plottable defines the
225    set of transforms available for it, and the axes on which
226    they operate.  These transforms can operate on the x axis
227    only, the y axis only or on the x and y axes together.
228   
229    This infrastructure is not able to support transformations
230    such as log and polar plots as these require full control
231    over the drawing of axes and grids.
232   
233    A transform has a number of attributes.
234   
235    name: user visible name for the transform.  This will
236        appear in the context menu for the axis and the transform
237        menu for the graph.
238    type: operational axis.  This determines whether the
239        transform should appear on x,y or z axis context
240        menus, or if it should appear in the context menu for
241        the graph.
242    inventory: (not implemented)
243        a dictionary of user settable parameter names and
244        their associated types.  These should appear as keyword
245        arguments to the transform call.  For example, Fresnel
246        reflectivity requires the substrate density:
247             { 'rho': type.Value(10e-6/units.angstrom**2) }
248        Supply reasonable defaults in the callback so that
249        limited plotting clients work even though they cannot
250        set the inventory.
251    """
252       
253    def __call__(self,plottable,**kwargs):
254        """Transform the data.  Whenever a plottable is added
255        to the axes, the infrastructure will apply all required
256        transforms.  When the user selects a different representation
257        for the axes (via menu, script, or context menu), all
258        plottables on the axes will be transformed.  The
259        plottable should store the underlying data but set
260        the standard x,dx,y,dy,z,dz attributes appropriately.
261       
262        If the call raises a NotImplemented error the dataline
263        will not be plotted.  The associated string will usually
264        be 'Not a valid transform', though other strings are possible.
265        The application may or may not display the message to the
266        user, along with an indication of which plottable was at fault.
267        """
268        raise NotImplemented,"Not a valid transform"
269
270    # Related issues
271    # ==============
272    #
273    # log scale:
274    #    All axes have implicit log/linear scaling options.
275    #
276    # normalization:
277    #    Want to display raw counts vs detector efficiency correction
278    #    Want to normalize by time/monitor/proton current/intensity.
279    #    Want to display by eg. counts per 3 sec or counts per 10000 monitor.
280    #    Want to divide by footprint (ab initio, fitted or measured).
281    #    Want to scale by attenuator values.
282    #
283    # compare/contrast:
284    #    Want to average all visible lines with the same tag, and
285    #    display difference from one particular line.  Not a transform
286    #    issue?
287    #
288    # multiline graph:
289    #    How do we show/hide data parts.  E.g., data or theory, or
290    #    different polarization cross sections?  One way is with
291    #    tags: each plottable has a set of tags and the tags are
292    #    listed as check boxes above the plotting area.  Click a
293    #    tag and all plottables with that tag are hidden on the
294    #    plot and on the legend.
295    #
296    # nonconformant y-axes:
297    #    What do we do with temperature vs. Q and reflectivity vs. Q
298    #    on the same graph?
299    #
300    # 2D -> 1D:
301    #    Want various slices through the data.  Do transforms apply
302    #    to the sliced data as well?
303
304
305class Plottable:
306    def xaxis(self, name, units):
307        self._xaxis = name
308        self._xunit = units
309
310    def yaxis(self, name, units):
311        self._yaxis = name
312        self._yunit = units
313
314    @classmethod
315    def labels(cls,collection):
316        """
317        Construct a set of unique labels for a collection of plottables of
318        the same type.
319       
320        Returns a map from plottable to name.
321        """
322        n = len(collection)
323        map = {}
324        if n > 0:
325            basename = str(cls).split('.')[-1]
326            if n == 1:
327                map[collection[0]] = basename
328            else:
329                for i in xrange(len(collection)):
330                    map[collection[i]] = "%s %d"%(basename,i)
331        return map
332    ##Use the following if @classmethod doesn't work
333    # labels = classmethod(labels)
334
335    def __init__(self):
336        self.view = View()
337   
338    def render(self,plot):
339        """The base class makes sure the correct units are being used for
340        subsequent plottable. 
341       
342        For now it is assumed that the graphs are commensurate, and if you
343        put a Qx object on a Temperature graph then you had better hope
344        that it makes sense.
345        """
346       
347        plot.xaxis(self._xaxis, self._xunit)
348        plot.yaxis(self._yaxis, self._yunit)
349       
350    def colors(self):
351        """Return the number of colors need to render the object"""
352        return 1
353   
354    def transform_x(self, func, errfunc):
355        """
356            @param func: reference to x transformation function
357           
358        """
359        self.view.transform_x(func, errfunc, self.x, self.dx)
360   
361    def transform_y(self, func, errfunc):
362        """
363            @param func: reference to y transformation function
364           
365        """
366        self.view.transform_y(func, errfunc, self.y, self.dy)
367   
368    class View:
369        """
370            Representation of the data that might include a transformation
371        """
372        x = None
373        y = None
374        dx = None
375        dy = None
376       
377        def __init__(self, x=None, y=None, dx=None, dy=None):
378            self.x = x
379            self.y = y
380            self.dx = dx
381            self.dy = dy
382           
383        def transform_x(self, func, errfunc, x, dx):
384            """
385                Transforms the x and dx vectors and stores the output.
386               
387                @param func: function to apply to the data
388                @param x: array of x values
389                @param dx: array of error values
390                @param errfunc: function to apply to errors
391            """
392            import copy
393            # Sanity check
394            if dx and not len(x)==len(dx):
395                raise ValueError, "Plottable.View: Given x and dx are not of the same length"
396           
397            self.= copy.deepcopy(x)
398            self.dx = copy.deepcopy(dx)
399           
400            for i in range(len(x)):
401                 self.x[i] = func(x[i])
402                 self.dx[i] = errfunc(dx[i])
403                         
404        def transform_y(self, func, errfunc, y, dy):
405            """
406                Transforms the x and dx vectors and stores the output.
407               
408                @param func: function to apply to the data
409                @param y: array of y values
410                @param dy: array of error values
411                @param errfunc: function to apply to errors
412            """
413            import copy
414            # Sanity check
415            if dy and not len(y)==len(dy):
416                raise ValueError, "Plottable.View: Given y and dy are not of the same length"
417           
418            self.= deepcopy(y)
419            self.dy = deepcopy(dy)
420           
421            for i in range(len(y)):
422                 self.y[i] = func(y[i])
423                 self.dy[i] = errfunc(dy[i])
424                 
425           
426
427class Data1D(Plottable):
428    """Data plottable: scatter plot of x,y with errors in x and y.
429    """
430   
431    def __init__(self,x,y,dx=None,dy=None):
432        """Draw points specified by x[i],y[i] in the current color/symbol.
433        Uncertainty in x is given by dx[i], or by (xlo[i],xhi[i]) if the
434        uncertainty is asymmetric.  Similarly for y uncertainty.
435
436        The title appears on the legend.
437        The label, if it is different, appears on the status bar.
438        """
439        self.name = "data"
440        self.x = x
441        self.y = y
442        self.dx = dx
443        self.dy = dy
444       
445        self.view = self.View(self.x, self.y, self.dx, self.dy)
446
447    def render(self,plot,**kw):
448        plot.points(self.view.x,self.view.y,dx=self.view.dx,dy=self.view.dy,**kw)
449
450    def changed(self):
451        return False
452
453    @classmethod
454    def labels(cls, collection):
455        """Build a label mostly unique within a collection"""
456        map = {}
457        for item in collection:
458            #map[item] = label(item, collection)
459            map[item] = r"$\rm{%s}$" % item.name
460        return map
461   
462class Theory1D(Plottable):
463    """Theory plottable: line plot of x,y with confidence interval y.
464    """
465    def __init__(self,x,y,dy=None):
466        """Draw lines specified in x[i],y[i] in the current color/symbol.
467        Confidence intervals in x are given by dx[i] or by (xlo[i],xhi[i])
468        if the limits are asymmetric.
469       
470        The title is the name that will show up on the legend.
471        """
472        self.x = x
473        self.y = y
474 
475        self.dy = dy
476
477    def render(self,plot,**kw):
478        plot.curve(self.x,self.y,dy=self.dy,**kw)
479
480    def changed(self):
481        return False
482
483
484
485class Fit1D(Plottable):
486    """Fit plottable: composed of a data line plus a theory line.  This
487    is treated like a single object from the perspective of the graph,
488    except that it will have two legend entries, one for the data and
489    one for the theory.
490
491    The color of the data and theory will be shared."""
492
493    def __init__(self,data=None,theory=None):
494        self.data=data
495        self.theory=theory
496
497    def render(self,plot,**kw):
498        self.data.render(plot,**kw)
499        self.theory.render(plot,**kw)
500
501    def changed(self):
502        return self.data.changed() or self.theory.changed()
503
504######################################################
505
506def sample_graph():
507    import numpy as nx
508   
509    # Construct a simple graph
510    if False:
511        x = nx.array([1,2,3,4,5,6],'d')
512        y = nx.array([4,5,6,5,4,5],'d')
513        dy = nx.array([0.2, 0.3, 0.1, 0.2, 0.9, 0.3])
514    else:
515        x = nx.linspace(0,1.,10000)
516        y = nx.sin(2*nx.pi*x*2.8)
517        dy = nx.sqrt(100*nx.abs(y))/100
518    data = Data1D(x,y,dy=dy)
519    data.xaxis('distance', 'm')
520    data.yaxis('time', 's')
521    graph = Graph()
522    graph.title('Walking Results')
523    graph.add(data)
524    graph.add(Theory1D(x,y,dy=dy))
525
526    return graph
527
528def demo_plotter(graph):
529    import wx
530    #from pylab_plottables import Plotter
531    from mplplotter import Plotter
532
533    # Make a frame to show it
534    app = wx.PySimpleApp()
535    frame = wx.Frame(None,-1,'Plottables')
536    plotter = Plotter(frame)
537    frame.Show()
538
539    # render the graph to the pylab plotter
540    graph.render(plotter)
541   
542    class GraphUpdate:
543        callnum=0
544        def __init__(self,graph,plotter):
545            self.graph,self.plotter = graph,plotter
546        def __call__(self):
547            if self.graph.changed(): 
548                self.graph.render(self.plotter)
549                return True
550            return False
551        def onIdle(self,event):
552            #print "On Idle checker %d"%(self.callnum)
553            self.callnum = self.callnum+1
554            if self.__call__(): 
555                pass # event.RequestMore()
556    update = GraphUpdate(graph,plotter)
557    frame.Bind(wx.EVT_IDLE,update.onIdle)
558    app.MainLoop()
559
560import sys; print sys.version
561if __name__ == "__main__":
562    demo_plotter(sample_graph())
563   
Note: See TracBrowser for help on using the repository browser.