source: sasview/guitools/plottables.py @ 6b8399b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 6b8399b was 057210c, checked in by Mathieu Doucet <doucetm@…>, 17 years ago

Added a View class and an example

  • Property mode set to 100644
File size: 19.0 KB
Line 
1"""Prototype plottable object support.
2
3The main point of this prototype is to provide a clean separation between
4the style (plotter details: color, grids, widgets, etc.) and substance
5(application details: which information to plot).  Programmers should not be
6dictating line colours and plotting symbols.
7
8Unlike the problem of style in CSS or Word, where most paragraphs look
9the same, each line on a graph has to be distinguishable from its neighbours.
10Our solution is to provide parametric styles, in which a number of
11different classes of object (e.g., reflectometry data, reflectometry
12theory) representing multiple graph primitives cycle through a colour
13palette provided by the underlying plotter.
14
15A full treatment would provide perceptual dimensions of prominence and
16distinctiveness rather than a simple colour number.
17"""
18
19# Design question: who owns the color?
20# Is it a property of the plottable?
21# Or of the plottable as it exists on the graph?
22# Or if the graph?
23# If a plottable can appear on multiple graphs, in some case the
24# color should be the same on each graph in which it appears, and
25# in other cases (where multiple plottables from different graphs
26# coexist), the color should be assigned by the graph.  In any case
27# once a plottable is placed on the graph its color should not
28# depend on the other plottables on the graph.  Furthermore, if
29# a plottable is added and removed from a graph and added again,
30# it may be nice, but not necessary, to have the color persist.
31#
32# The safest approach seems to be to give ownership of color
33# to the graph, which will allocate the colors along with the
34# plottable.  The plottable will need to return the number of
35# colors that are needed.
36#
37# The situation is less clear for symbols.  It is less clear
38# how much the application requires that symbols be unique across
39# all plots on the graph.
40
41# Support for ancient python versions
42if 'any' not in dir(__builtins__):
43    def any(L):
44        for cond in L:
45            if cond: return True
46        return False
47    def all(L):
48        for cond in L:
49            if not cond: return False
50        return True
51
52# Graph structure for holding multiple plottables
53class Graph:
54    """
55    Generic plottables graph structure.
56   
57    Plot styles are based on color/symbol lists.  The user gets to select
58    the list of colors/symbols/sizes to choose from, not the application
59    developer.  The programmer only gets to add/remove lines from the
60    plot and move to the next symbol/color.
61
62    Another dimension is prominence, which refers to line sizes/point sizes.
63
64    Axis transformations allow the user to select the coordinate view
65    which provides clarity to the data.  There is no way we can provide
66    every possible transformation for every application generically, so
67    the plottable objects themselves will need to provide the transformations.
68    Here are some examples from reflectometry:
69       independent: x -> f(x)
70          monitor scaling: y -> M*y
71          log:  y -> log(y if y > min else min)
72          cos:  y -> cos(y*pi/180)
73       dependent:   x -> f(x,y)
74          Q4:      y -> y*x^4
75          fresnel: y -> y*fresnel(x)
76       coordinated: x,y = f(x,y)
77          Q:    x -> 2*pi/L (cos(x*pi/180) - cos(y*pi/180))
78                y -> 2*pi/L (sin(x*pi/180) + sin(y*pi/180))
79       reducing: x,y = f(x1,x2,y1,y2)
80          spin asymmetry: x -> x1, y -> (y1 - y2)/(y1 + y2)
81          vector net: x -> x1, y -> y1*cos(y2*pi/180)
82    Multiple transformations are possible, such as Q4 spin asymmetry
83
84    Axes have further complications in that the units of what are being
85    plotted should correspond to the units on the axes.  Plotting multiple
86    types on the same graph should be handled gracefully, e.g., by creating
87    a separate tab for each available axis type, breaking into subplots,
88    showing multiple axes on the same plot, or generating inset plots.
89    Ultimately the decision should be left to the user.
90
91    Graph properties such as grids/crosshairs should be under user control,
92    as should the sizes of items such as axis fonts, etc.  No direct
93    access will be provided to the application.
94
95    Axis limits are mostly under user control.  If the user has zoomed or
96    panned then those limits are preserved even if new data is plotted.
97    The exception is when, e.g., scanning through a set of related lines
98    in which the user may want to fix the limits so that user can compare
99    the values directly.  Another exception is when creating multiple
100    graphs sharing the same limits, though this case may be important
101    enough that it is handled by the graph widget itself.  Axis limits
102    will of course have to understand the effects of axis transformations.
103
104    High level plottable objects may be composed of low level primitives.
105    Operations such as legend/hide/show copy/paste, etc. need to operate
106    on these primitives as a group.  E.g., allowing the user to have a
107    working canvas where they can drag lines they want to save and annotate
108    them.
109
110    Graphs need to be printable.  A page layout program for entire plots
111    would be nice.
112    """
113    def xaxis(self,name,units):
114        """Properties of the x axis.
115        """
116        if self.prop["xunit"] and units != self.prop["xunit"]:
117            pass
118            #print "Plottable: how do we handle non-commensurate units"
119        self.prop["xlabel"] = "%s (%s)"%(name,units)
120        self.prop["xunit"] = units
121
122    def yaxis(self,name,units):
123        """Properties of the y axis.
124        """
125        if self.prop["yunit"] and units != self.prop["yunit"]:
126            pass
127            #print "Plottable: how do we handle non-commensurate units"
128        self.prop["ylabel"] = "%s (%s)"%(name,units)
129        self.prop["yunit"] = units
130       
131    def title(self,name):
132        """Graph title
133        """
134        self.prop["title"] = name
135       
136    def get(self,key):
137        """Get the graph properties"""
138        if key=="color":
139            return self.color
140        elif key == "symbol":
141            return self.symbol
142        else:
143            return self.prop[key]
144
145    def set(self,**kw):
146        """Set the graph properties"""
147        for key in kw:
148            if key == "color":
149                self.color = kw[key]%len(self.colorlist)
150            elif key == "symbol":
151                self.symbol = kw[key]%len(self.symbollist)
152            else:
153                self.prop[key] = kw[key]
154
155    def isPlotted(self, plottable):
156        """Return True is the plottable is already on the graph"""
157        if plottable in self.plottables:
158            return True
159        return False 
160       
161    def add(self,plottable):
162        """Add a new plottable to the graph"""
163        # record the colour associated with the plottable
164        if not plottable in self.plottables:         
165            self.plottables[plottable]=self.color
166            self.color += plottable.colors()
167       
168    def changed(self):
169        """Detect if any graphed plottables have changed"""
170        return any([p.changed() for p in self.plottables])
171
172    def delete(self,plottable):
173        """Remove an existing plottable from the graph"""
174        if plottable in self.plottables:
175            del self.plottables[plottable]
176
177    def reset(self):
178        """Reset the graph."""
179        self.color = 0
180        self.symbol = 0
181        self.prop = {"xlabel":"", "xunit":None,
182                     "ylabel":"","yunit":None,
183                     "title":""}
184        self.plottables = {}
185
186    def _make_labels(self):
187        # Find groups of related plottables
188        sets = {}
189        for p in self.plottables:
190            if p.__class__ in sets:
191                sets[p.__class__].append(p)
192            else:
193                sets[p.__class__] = [p]
194               
195        # Ask each plottable class for a set of unique labels
196        labels = {}
197        for c in sets:
198            labels.update(c.labels(sets[c]))
199       
200        return labels
201
202    def render(self,plot):
203        """Redraw the graph"""
204        plot.clear()
205        plot.properties(self.prop)
206        labels = self._make_labels()
207        for p in self.plottables:
208            p.render(plot,color=self.plottables[p],symbol=0,label=labels[p])
209        plot.render()
210
211    def __init__(self,**kw):
212        self.reset()
213        self.set(**kw)
214
215
216# Transform interface definition
217# No need to inherit from this class, just need to provide
218# the same methods.
219class Transform:
220    """Define a transform plugin to the plottable architecture.
221   
222    Transforms operate on axes.  The plottable defines the
223    set of transforms available for it, and the axes on which
224    they operate.  These transforms can operate on the x axis
225    only, the y axis only or on the x and y axes together.
226   
227    This infrastructure is not able to support transformations
228    such as log and polar plots as these require full control
229    over the drawing of axes and grids.
230   
231    A transform has a number of attributes.
232   
233    name: user visible name for the transform.  This will
234        appear in the context menu for the axis and the transform
235        menu for the graph.
236    type: operational axis.  This determines whether the
237        transform should appear on x,y or z axis context
238        menus, or if it should appear in the context menu for
239        the graph.
240    inventory: (not implemented)
241        a dictionary of user settable parameter names and
242        their associated types.  These should appear as keyword
243        arguments to the transform call.  For example, Fresnel
244        reflectivity requires the substrate density:
245             { 'rho': type.Value(10e-6/units.angstrom**2) }
246        Supply reasonable defaults in the callback so that
247        limited plotting clients work even though they cannot
248        set the inventory.
249    """
250       
251    def __call__(self,plottable,**kwargs):
252        """Transform the data.  Whenever a plottable is added
253        to the axes, the infrastructure will apply all required
254        transforms.  When the user selects a different representation
255        for the axes (via menu, script, or context menu), all
256        plottables on the axes will be transformed.  The
257        plottable should store the underlying data but set
258        the standard x,dx,y,dy,z,dz attributes appropriately.
259       
260        If the call raises a NotImplemented error the dataline
261        will not be plotted.  The associated string will usually
262        be 'Not a valid transform', though other strings are possible.
263        The application may or may not display the message to the
264        user, along with an indication of which plottable was at fault.
265        """
266        raise NotImplemented,"Not a valid transform"
267
268    # Related issues
269    # ==============
270    #
271    # log scale:
272    #    All axes have implicit log/linear scaling options.
273    #
274    # normalization:
275    #    Want to display raw counts vs detector efficiency correction
276    #    Want to normalize by time/monitor/proton current/intensity.
277    #    Want to display by eg. counts per 3 sec or counts per 10000 monitor.
278    #    Want to divide by footprint (ab initio, fitted or measured).
279    #    Want to scale by attenuator values.
280    #
281    # compare/contrast:
282    #    Want to average all visible lines with the same tag, and
283    #    display difference from one particular line.  Not a transform
284    #    issue?
285    #
286    # multiline graph:
287    #    How do we show/hide data parts.  E.g., data or theory, or
288    #    different polarization cross sections?  One way is with
289    #    tags: each plottable has a set of tags and the tags are
290    #    listed as check boxes above the plotting area.  Click a
291    #    tag and all plottables with that tag are hidden on the
292    #    plot and on the legend.
293    #
294    # nonconformant y-axes:
295    #    What do we do with temperature vs. Q and reflectivity vs. Q
296    #    on the same graph?
297    #
298    # 2D -> 1D:
299    #    Want various slices through the data.  Do transforms apply
300    #    to the sliced data as well?
301
302
303class Plottable:
304    def xaxis(self, name, units):
305        self._xaxis = name
306        self._xunit = units
307
308    def yaxis(self, name, units):
309        self._yaxis = name
310        self._yunit = units
311
312    @classmethod
313    def labels(cls,collection):
314        """
315        Construct a set of unique labels for a collection of plottables of
316        the same type.
317       
318        Returns a map from plottable to name.
319        """
320        n = len(collection)
321        map = {}
322        if n > 0:
323            basename = str(cls).split('.')[-1]
324            if n == 1:
325                map[collection[0]] = basename
326            else:
327                for i in xrange(len(collection)):
328                    map[collection[i]] = "%s %d"%(basename,i)
329        return map
330    ##Use the following if @classmethod doesn't work
331    # labels = classmethod(labels)
332
333    def __init__(self):
334        pass
335   
336    def render(self,plot):
337        """The base class makes sure the correct units are being used for
338        subsequent plottable. 
339       
340        For now it is assumed that the graphs are commensurate, and if you
341        put a Qx object on a Temperature graph then you had better hope
342        that it makes sense.
343        """
344        plot.xaxis(self._xaxis, self._xunit)
345        plot.yaxis(self._yaxis, self._yunit)
346       
347    def colors(self):
348        """Return the number of colors need to render the object"""
349        return 1
350   
351    class View:
352        """
353            Representation of the data that might include a transformation
354        """
355        x = None
356        y = None
357        dx = None
358        dy = None
359       
360        def __init__(self, x=None, y=None, dx=None, dy=None):
361            self.x = x
362            self.y = y
363            self.dx = dx
364            self.dy = dy
365           
366        def transform_x(self, func, errfunc, x, dx):
367            """
368                Transforms the x and dx vectors and stores the output.
369               
370                @param func: function to apply to the data
371                @param x: array of x values
372                @param dx: array of error values
373                @param errfunc: function to apply to errors
374            """
375            import copy
376            # Sanity check
377            if dx and not len(x)==len(dx):
378                raise ValueError, "Plottable.View: Given x and dx are not of the same length"
379           
380            self.= deepcopy(x)
381            self.dx = deepcopy(dx)
382           
383            for i in range(len(x)):
384                 self.x[i] = func(x[i])
385                 self.dx[i] = errfunc(dx[i])
386                     
387        def transform_y(self, func, errfunc, y, dy):
388            """
389                Transforms the x and dx vectors and stores the output.
390               
391                @param func: function to apply to the data
392                @param y: array of y values
393                @param dy: array of error values
394                @param errfunc: function to apply to errors
395            """
396            import copy
397            # Sanity check
398            if dy and not len(y)==len(dy):
399                raise ValueError, "Plottable.View: Given y and dy are not of the same length"
400           
401            self.= deepcopy(y)
402            self.dy = deepcopy(dy)
403           
404            for i in range(len(y)):
405                 self.y[i] = func(y[i])
406                 self.dy[i] = errfunc(dy[i])
407                     
408       
409
410class Data1D(Plottable):
411    """Data plottable: scatter plot of x,y with errors in x and y.
412    """
413   
414    def __init__(self,x,y,dx=None,dy=None):
415        """Draw points specified by x[i],y[i] in the current color/symbol.
416        Uncertainty in x is given by dx[i], or by (xlo[i],xhi[i]) if the
417        uncertainty is asymmetric.  Similarly for y uncertainty.
418
419        The title appears on the legend.
420        The label, if it is different, appears on the status bar.
421        """
422        self.name = "data"
423        self.x = x
424        self.y = y
425        self.dx = dx
426        self.dy = dy
427       
428        self.view = self.View(self.x, self.y, self.dx, self.dy)
429
430    def render(self,plot,**kw):
431        plot.points(self.view.x,self.view.y,dx=self.view.dx,dy=self.view.dy,**kw)
432
433    def changed(self):
434        return False
435
436    @classmethod
437    def labels(cls, collection):
438        """Build a label mostly unique within a collection"""
439        map = {}
440        for item in collection:
441            #map[item] = label(item, collection)
442            map[item] = r"$\rm{%s}$" % item.name
443        return map
444   
445class Theory1D(Plottable):
446    """Theory plottable: line plot of x,y with confidence interval y.
447    """
448    def __init__(self,x,y,dy=None):
449        """Draw lines specified in x[i],y[i] in the current color/symbol.
450        Confidence intervals in x are given by dx[i] or by (xlo[i],xhi[i])
451        if the limits are asymmetric.
452       
453        The title is the name that will show up on the legend.
454        """
455        self.x = x
456        self.y = y
457 
458        self.dy = dy
459
460    def render(self,plot,**kw):
461        plot.curve(self.x,self.y,dy=self.dy,**kw)
462
463    def changed(self):
464        return False
465
466
467
468class Fit1D(Plottable):
469    """Fit plottable: composed of a data line plus a theory line.  This
470    is treated like a single object from the perspective of the graph,
471    except that it will have two legend entries, one for the data and
472    one for the theory.
473
474    The color of the data and theory will be shared."""
475
476    def __init__(self,data=None,theory=None):
477        self.data=data
478        self.theory=theory
479
480    def render(self,plot,**kw):
481        self.data.render(plot,**kw)
482        self.theory.render(plot,**kw)
483
484    def changed(self):
485        return self.data.changed() or self.theory.changed()
486
487######################################################
488
489def sample_graph():
490    import numpy as nx
491   
492    # Construct a simple graph
493    if False:
494        x = nx.array([1,2,3,4,5,6],'d')
495        y = nx.array([4,5,6,5,4,5],'d')
496        dy = nx.array([0.2, 0.3, 0.1, 0.2, 0.9, 0.3])
497    else:
498        x = nx.linspace(0,1.,10000)
499        y = nx.sin(2*nx.pi*x*2.8)
500        dy = nx.sqrt(100*nx.abs(y))/100
501    data = Data1D(x,y,dy=dy)
502    data.xaxis('distance', 'm')
503    data.yaxis('time', 's')
504    graph = Graph()
505    graph.title('Walking Results')
506    graph.add(data)
507    graph.add(Theory1D(x,y,dy=dy))
508
509    return graph
510
511def demo_plotter(graph):
512    import wx
513    #from pylab_plottables import Plotter
514    from mplplotter import Plotter
515
516    # Make a frame to show it
517    app = wx.PySimpleApp()
518    frame = wx.Frame(None,-1,'Plottables')
519    plotter = Plotter(frame)
520    frame.Show()
521
522    # render the graph to the pylab plotter
523    graph.render(plotter)
524   
525    class GraphUpdate:
526        callnum=0
527        def __init__(self,graph,plotter):
528            self.graph,self.plotter = graph,plotter
529        def __call__(self):
530            if self.graph.changed(): 
531                self.graph.render(self.plotter)
532                return True
533            return False
534        def onIdle(self,event):
535            #print "On Idle checker %d"%(self.callnum)
536            self.callnum = self.callnum+1
537            if self.__call__(): 
538                pass # event.RequestMore()
539    update = GraphUpdate(graph,plotter)
540    frame.Bind(wx.EVT_IDLE,update.onIdle)
541    app.MainLoop()
542
543import sys; print sys.version
544if __name__ == "__main__":
545    demo_plotter(sample_graph())
546   
Note: See TracBrowser for help on using the repository browser.