source: sasview/guitools/plottables.py @ 5789654

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 5789654 was 5789654, checked in by Gervaise Alina <gervyh@…>, 17 years ago

modied fitdialog property dialog added fittings , modified plottables

  • Property mode set to 100644
File size: 21.2 KB
RevLine 
[2bf92f2]1"""Prototype plottable object support.
2
3The main point of this prototype is to provide a clean separation between
4the style (plotter details: color, grids, widgets, etc.) and substance
5(application details: which information to plot).  Programmers should not be
6dictating line colours and plotting symbols.
7
8Unlike the problem of style in CSS or Word, where most paragraphs look
9the same, each line on a graph has to be distinguishable from its neighbours.
10Our solution is to provide parametric styles, in which a number of
11different classes of object (e.g., reflectometry data, reflectometry
12theory) representing multiple graph primitives cycle through a colour
13palette provided by the underlying plotter.
14
15A full treatment would provide perceptual dimensions of prominence and
16distinctiveness rather than a simple colour number.
17"""
18
19# Design question: who owns the color?
20# Is it a property of the plottable?
21# Or of the plottable as it exists on the graph?
22# Or if the graph?
23# If a plottable can appear on multiple graphs, in some case the
24# color should be the same on each graph in which it appears, and
25# in other cases (where multiple plottables from different graphs
26# coexist), the color should be assigned by the graph.  In any case
27# once a plottable is placed on the graph its color should not
28# depend on the other plottables on the graph.  Furthermore, if
29# a plottable is added and removed from a graph and added again,
30# it may be nice, but not necessary, to have the color persist.
31#
32# The safest approach seems to be to give ownership of color
33# to the graph, which will allocate the colors along with the
34# plottable.  The plottable will need to return the number of
35# colors that are needed.
36#
37# The situation is less clear for symbols.  It is less clear
38# how much the application requires that symbols be unique across
39# all plots on the graph.
40
41# Support for ancient python versions
42if 'any' not in dir(__builtins__):
43    def any(L):
44        for cond in L:
45            if cond: return True
46        return False
47    def all(L):
48        for cond in L:
49            if not cond: return False
50        return True
51
52# Graph structure for holding multiple plottables
53class Graph:
54    """
55    Generic plottables graph structure.
56   
57    Plot styles are based on color/symbol lists.  The user gets to select
58    the list of colors/symbols/sizes to choose from, not the application
59    developer.  The programmer only gets to add/remove lines from the
60    plot and move to the next symbol/color.
61
62    Another dimension is prominence, which refers to line sizes/point sizes.
63
64    Axis transformations allow the user to select the coordinate view
65    which provides clarity to the data.  There is no way we can provide
66    every possible transformation for every application generically, so
67    the plottable objects themselves will need to provide the transformations.
68    Here are some examples from reflectometry:
69       independent: x -> f(x)
70          monitor scaling: y -> M*y
71          log:  y -> log(y if y > min else min)
72          cos:  y -> cos(y*pi/180)
73       dependent:   x -> f(x,y)
74          Q4:      y -> y*x^4
75          fresnel: y -> y*fresnel(x)
76       coordinated: x,y = f(x,y)
77          Q:    x -> 2*pi/L (cos(x*pi/180) - cos(y*pi/180))
78                y -> 2*pi/L (sin(x*pi/180) + sin(y*pi/180))
79       reducing: x,y = f(x1,x2,y1,y2)
80          spin asymmetry: x -> x1, y -> (y1 - y2)/(y1 + y2)
81          vector net: x -> x1, y -> y1*cos(y2*pi/180)
82    Multiple transformations are possible, such as Q4 spin asymmetry
83
84    Axes have further complications in that the units of what are being
85    plotted should correspond to the units on the axes.  Plotting multiple
86    types on the same graph should be handled gracefully, e.g., by creating
87    a separate tab for each available axis type, breaking into subplots,
88    showing multiple axes on the same plot, or generating inset plots.
89    Ultimately the decision should be left to the user.
90
91    Graph properties such as grids/crosshairs should be under user control,
92    as should the sizes of items such as axis fonts, etc.  No direct
93    access will be provided to the application.
94
95    Axis limits are mostly under user control.  If the user has zoomed or
96    panned then those limits are preserved even if new data is plotted.
97    The exception is when, e.g., scanning through a set of related lines
98    in which the user may want to fix the limits so that user can compare
99    the values directly.  Another exception is when creating multiple
100    graphs sharing the same limits, though this case may be important
101    enough that it is handled by the graph widget itself.  Axis limits
102    will of course have to understand the effects of axis transformations.
103
104    High level plottable objects may be composed of low level primitives.
105    Operations such as legend/hide/show copy/paste, etc. need to operate
106    on these primitives as a group.  E.g., allowing the user to have a
107    working canvas where they can drag lines they want to save and annotate
108    them.
109
110    Graphs need to be printable.  A page layout program for entire plots
111    would be nice.
112    """
113    def xaxis(self,name,units):
114        """Properties of the x axis.
115        """
116        if self.prop["xunit"] and units != self.prop["xunit"]:
117            pass
118            #print "Plottable: how do we handle non-commensurate units"
119        self.prop["xlabel"] = "%s (%s)"%(name,units)
120        self.prop["xunit"] = units
121
122    def yaxis(self,name,units):
123        """Properties of the y axis.
124        """
[057210c]125        if self.prop["yunit"] and units != self.prop["yunit"]:
[2bf92f2]126            pass
127            #print "Plottable: how do we handle non-commensurate units"
128        self.prop["ylabel"] = "%s (%s)"%(name,units)
[057210c]129        self.prop["yunit"] = units
[2bf92f2]130       
131    def title(self,name):
132        """Graph title
133        """
134        self.prop["title"] = name
135       
136    def get(self,key):
137        """Get the graph properties"""
138        if key=="color":
139            return self.color
140        elif key == "symbol":
141            return self.symbol
142        else:
143            return self.prop[key]
144
145    def set(self,**kw):
146        """Set the graph properties"""
147        for key in kw:
148            if key == "color":
149                self.color = kw[key]%len(self.colorlist)
150            elif key == "symbol":
151                self.symbol = kw[key]%len(self.symbollist)
152            else:
153                self.prop[key] = kw[key]
154
155    def isPlotted(self, plottable):
156        """Return True is the plottable is already on the graph"""
157        if plottable in self.plottables:
158            return True
159        return False 
160       
161    def add(self,plottable):
162        """Add a new plottable to the graph"""
163        # record the colour associated with the plottable
164        if not plottable in self.plottables:         
165            self.plottables[plottable]=self.color
166            self.color += plottable.colors()
167       
168    def changed(self):
169        """Detect if any graphed plottables have changed"""
170        return any([p.changed() for p in self.plottables])
171
172    def delete(self,plottable):
173        """Remove an existing plottable from the graph"""
174        if plottable in self.plottables:
175            del self.plottables[plottable]
[5789654]176        if self.color > 0:
177            self.color =  self.color -1
178        else:
179            self.color =0 
[2bf92f2]180
181    def reset(self):
182        """Reset the graph."""
183        self.color = 0
184        self.symbol = 0
185        self.prop = {"xlabel":"", "xunit":None,
186                     "ylabel":"","yunit":None,
187                     "title":""}
188        self.plottables = {}
189
190    def _make_labels(self):
191        # Find groups of related plottables
192        sets = {}
193        for p in self.plottables:
194            if p.__class__ in sets:
195                sets[p.__class__].append(p)
196            else:
197                sets[p.__class__] = [p]
198               
199        # Ask each plottable class for a set of unique labels
200        labels = {}
201        for c in sets:
202            labels.update(c.labels(sets[c]))
203       
204        return labels
[52b1f77]205   
[6cfe703]206    def returnPlottable(self):
207        return self.plottables
[2bf92f2]208
209    def render(self,plot):
210        """Redraw the graph"""
211        plot.clear()
212        plot.properties(self.prop)
213        labels = self._make_labels()
214        for p in self.plottables:
215            p.render(plot,color=self.plottables[p],symbol=0,label=labels[p])
216        plot.render()
217
218    def __init__(self,**kw):
219        self.reset()
220        self.set(**kw)
221
222
223# Transform interface definition
224# No need to inherit from this class, just need to provide
225# the same methods.
226class Transform:
227    """Define a transform plugin to the plottable architecture.
228   
229    Transforms operate on axes.  The plottable defines the
230    set of transforms available for it, and the axes on which
231    they operate.  These transforms can operate on the x axis
232    only, the y axis only or on the x and y axes together.
233   
234    This infrastructure is not able to support transformations
235    such as log and polar plots as these require full control
236    over the drawing of axes and grids.
237   
238    A transform has a number of attributes.
239   
240    name: user visible name for the transform.  This will
241        appear in the context menu for the axis and the transform
242        menu for the graph.
243    type: operational axis.  This determines whether the
244        transform should appear on x,y or z axis context
245        menus, or if it should appear in the context menu for
246        the graph.
247    inventory: (not implemented)
248        a dictionary of user settable parameter names and
249        their associated types.  These should appear as keyword
250        arguments to the transform call.  For example, Fresnel
251        reflectivity requires the substrate density:
252             { 'rho': type.Value(10e-6/units.angstrom**2) }
253        Supply reasonable defaults in the callback so that
254        limited plotting clients work even though they cannot
255        set the inventory.
256    """
257       
258    def __call__(self,plottable,**kwargs):
259        """Transform the data.  Whenever a plottable is added
260        to the axes, the infrastructure will apply all required
261        transforms.  When the user selects a different representation
262        for the axes (via menu, script, or context menu), all
263        plottables on the axes will be transformed.  The
264        plottable should store the underlying data but set
265        the standard x,dx,y,dy,z,dz attributes appropriately.
266       
267        If the call raises a NotImplemented error the dataline
268        will not be plotted.  The associated string will usually
269        be 'Not a valid transform', though other strings are possible.
270        The application may or may not display the message to the
271        user, along with an indication of which plottable was at fault.
272        """
273        raise NotImplemented,"Not a valid transform"
274
275    # Related issues
276    # ==============
277    #
278    # log scale:
279    #    All axes have implicit log/linear scaling options.
280    #
281    # normalization:
282    #    Want to display raw counts vs detector efficiency correction
283    #    Want to normalize by time/monitor/proton current/intensity.
284    #    Want to display by eg. counts per 3 sec or counts per 10000 monitor.
285    #    Want to divide by footprint (ab initio, fitted or measured).
286    #    Want to scale by attenuator values.
287    #
288    # compare/contrast:
289    #    Want to average all visible lines with the same tag, and
290    #    display difference from one particular line.  Not a transform
291    #    issue?
292    #
293    # multiline graph:
294    #    How do we show/hide data parts.  E.g., data or theory, or
295    #    different polarization cross sections?  One way is with
296    #    tags: each plottable has a set of tags and the tags are
297    #    listed as check boxes above the plotting area.  Click a
298    #    tag and all plottables with that tag are hidden on the
299    #    plot and on the legend.
300    #
301    # nonconformant y-axes:
302    #    What do we do with temperature vs. Q and reflectivity vs. Q
303    #    on the same graph?
304    #
305    # 2D -> 1D:
306    #    Want various slices through the data.  Do transforms apply
307    #    to the sliced data as well?
308
309
310class Plottable:
311    def xaxis(self, name, units):
312        self._xaxis = name
313        self._xunit = units
314
315    def yaxis(self, name, units):
316        self._yaxis = name
317        self._yunit = units
[5789654]318    def get_xaxis(self):
319        return self._xaxis, self._xunit
320    def get_yaxis(self):
321        return self._yaxis, self._yunit
[2bf92f2]322
323    @classmethod
324    def labels(cls,collection):
325        """
326        Construct a set of unique labels for a collection of plottables of
327        the same type.
328       
329        Returns a map from plottable to name.
330        """
331        n = len(collection)
332        map = {}
333        if n > 0:
334            basename = str(cls).split('.')[-1]
335            if n == 1:
336                map[collection[0]] = basename
337            else:
338                for i in xrange(len(collection)):
339                    map[collection[i]] = "%s %d"%(basename,i)
340        return map
341    ##Use the following if @classmethod doesn't work
342    # labels = classmethod(labels)
343
344    def __init__(self):
[6cfe703]345        self.view = View()
[5789654]346        self._xaxis = ""
347        self._xunit = ""
348        self._yaxis = ""
349        self._yunit = "" 
350       
[52b1f77]351    def set_View(self,x,y):
[8cebf9b]352        """ Load View  """
[52b1f77]353        self.x= x
354        self.y = y
355        self.reset_view()
356       
357    def reset_view(self):
[8cebf9b]358        """ Reload view with new value to plot"""
[52b1f77]359        self.view = self.View(self.x, self.y, self.dx, self.dy)
[5789654]360       
[1d40f44]361       
[2bf92f2]362   
363    def render(self,plot):
364        """The base class makes sure the correct units are being used for
365        subsequent plottable. 
366       
367        For now it is assumed that the graphs are commensurate, and if you
368        put a Qx object on a Temperature graph then you had better hope
369        that it makes sense.
370        """
[52b1f77]371       
[8e4516f]372        plot.xaxis(self._xaxis, self._xunit)
373        plot.yaxis(self._yaxis, self._yunit)
[2bf92f2]374       
375    def colors(self):
376        """Return the number of colors need to render the object"""
377        return 1
[057210c]378   
[6cfe703]379    def transform_x(self, func, errfunc):
380        """
381            @param func: reference to x transformation function
382           
383        """
384        self.view.transform_x(func, errfunc, self.x, self.dx)
385   
386    def transform_y(self, func, errfunc):
387        """
388            @param func: reference to y transformation function
389           
390        """
391        self.view.transform_y(func, errfunc, self.y, self.dy)
[f63f5ff]392       
[5789654]393    def returnValuesOfView(self):
[f63f5ff]394        return self.view.returnXview()
395       
396       
[057210c]397    class View:
398        """
399            Representation of the data that might include a transformation
400        """
401        x = None
402        y = None
403        dx = None
404        dy = None
405       
406        def __init__(self, x=None, y=None, dx=None, dy=None):
407            self.x = x
408            self.y = y
409            self.dx = dx
410            self.dy = dy
411           
412        def transform_x(self, func, errfunc, x, dx):
413            """
414                Transforms the x and dx vectors and stores the output.
415               
416                @param func: function to apply to the data
417                @param x: array of x values
418                @param dx: array of error values
419                @param errfunc: function to apply to errors
420            """
421            import copy
[f79b054]422            import numpy
[057210c]423            # Sanity check
424            if dx and not len(x)==len(dx):
425                raise ValueError, "Plottable.View: Given x and dx are not of the same length"
426           
[f79b054]427           
428            self.x = numpy.zeros(len(x))
429            self.dx = numpy.zeros(len(x))
[057210c]430           
431            for i in range(len(x)):
[2da23bc]432                self.x[i] = func(x[i])
[b6b9d76]433                if dx !=None:
[2da23bc]434                    self.dx[i] = errfunc(x[i], dx[i])
435                else:
436                   self.dx[i] = errfunc(x[i])       
[057210c]437        def transform_y(self, func, errfunc, y, dy):
438            """
439                Transforms the x and dx vectors and stores the output.
440               
441                @param func: function to apply to the data
442                @param y: array of y values
443                @param dy: array of error values
444                @param errfunc: function to apply to errors
445            """
446            import copy
[2da23bc]447            import numpy
[057210c]448            # Sanity check
449            if dy and not len(y)==len(dy):
450                raise ValueError, "Plottable.View: Given y and dy are not of the same length"
451           
[f79b054]452            self.y = numpy.zeros(len(y))
453            self.dy = numpy.zeros(len(y))
454           
[057210c]455            for i in range(len(y)):
456                 self.y[i] = func(y[i])
[b6b9d76]457                 if dy !=None:
[2da23bc]458                     self.dy[i] = errfunc(y[i], dy[i])
459                 else:
460                     self.dy[i] = errfunc(y[i])
[f63f5ff]461                     
462        def returnXview(self):
[5789654]463            return self.x,self.y,self.dx,self.dy
464           
[52b1f77]465     
[2bf92f2]466class Data1D(Plottable):
467    """Data plottable: scatter plot of x,y with errors in x and y.
468    """
469   
470    def __init__(self,x,y,dx=None,dy=None):
471        """Draw points specified by x[i],y[i] in the current color/symbol.
472        Uncertainty in x is given by dx[i], or by (xlo[i],xhi[i]) if the
473        uncertainty is asymmetric.  Similarly for y uncertainty.
474
475        The title appears on the legend.
476        The label, if it is different, appears on the status bar.
477        """
[057210c]478        self.name = "data"
[2bf92f2]479        self.x = x
480        self.y = y
481        self.dx = dx
482        self.dy = dy
[5789654]483        self.xaxis( 'q', 'A')
484        self.yaxis( 'intensity', 'cm')
[057210c]485        self.view = self.View(self.x, self.y, self.dx, self.dy)
[52b1f77]486       
[2bf92f2]487    def render(self,plot,**kw):
[057210c]488        plot.points(self.view.x,self.view.y,dx=self.view.dx,dy=self.view.dy,**kw)
[f79b054]489        #plot.points(self.x,self.y,dx=self.dx,dy=self.dy,**kw)
[52b1f77]490   
[2bf92f2]491    def changed(self):
492        return False
493
[057210c]494    @classmethod
495    def labels(cls, collection):
496        """Build a label mostly unique within a collection"""
497        map = {}
498        for item in collection:
499            #map[item] = label(item, collection)
500            map[item] = r"$\rm{%s}$" % item.name
501        return map
[2bf92f2]502   
503class Theory1D(Plottable):
504    """Theory plottable: line plot of x,y with confidence interval y.
505    """
506    def __init__(self,x,y,dy=None):
507        """Draw lines specified in x[i],y[i] in the current color/symbol.
508        Confidence intervals in x are given by dx[i] or by (xlo[i],xhi[i])
509        if the limits are asymmetric.
510       
511        The title is the name that will show up on the legend.
512        """
[5789654]513        self.name= "theo"
[2bf92f2]514        self.x = x
515        self.y = y
516        self.dy = dy
[5789654]517       
[061775ff]518        self.view = self.View(self.x, self.y, None, self.dy)
[2bf92f2]519    def render(self,plot,**kw):
[061775ff]520        #plot.curve(self.x,self.y,dy=self.dy,**kw)
521        plot.curve(self.view.x,self.view.y,dy=self.view.dy,**kw)
[2bf92f2]522
523    def changed(self):
524        return False
[5789654]525    @classmethod
526    def labels(cls, collection):
527        """Build a label mostly unique within a collection"""
528        map = {}
529        for item in collection:
530            #map[item] = label(item, collection)
531            map[item] = r"$\rm{%s}$" % item.name
532        return map
533   
[2bf92f2]534
535
536class Fit1D(Plottable):
537    """Fit plottable: composed of a data line plus a theory line.  This
538    is treated like a single object from the perspective of the graph,
539    except that it will have two legend entries, one for the data and
540    one for the theory.
541
542    The color of the data and theory will be shared."""
543
544    def __init__(self,data=None,theory=None):
545        self.data=data
546        self.theory=theory
547
548    def render(self,plot,**kw):
549        self.data.render(plot,**kw)
550        self.theory.render(plot,**kw)
551
552    def changed(self):
553        return self.data.changed() or self.theory.changed()
554
555######################################################
556
557def sample_graph():
558    import numpy as nx
559   
560    # Construct a simple graph
561    if False:
562        x = nx.array([1,2,3,4,5,6],'d')
563        y = nx.array([4,5,6,5,4,5],'d')
564        dy = nx.array([0.2, 0.3, 0.1, 0.2, 0.9, 0.3])
565    else:
566        x = nx.linspace(0,1.,10000)
567        y = nx.sin(2*nx.pi*x*2.8)
568        dy = nx.sqrt(100*nx.abs(y))/100
569    data = Data1D(x,y,dy=dy)
570    data.xaxis('distance', 'm')
571    data.yaxis('time', 's')
572    graph = Graph()
573    graph.title('Walking Results')
574    graph.add(data)
575    graph.add(Theory1D(x,y,dy=dy))
576
[52b1f77]577    return graph
[2bf92f2]578
579def demo_plotter(graph):
580    import wx
581    #from pylab_plottables import Plotter
582    from mplplotter import Plotter
583
584    # Make a frame to show it
585    app = wx.PySimpleApp()
586    frame = wx.Frame(None,-1,'Plottables')
587    plotter = Plotter(frame)
588    frame.Show()
589
590    # render the graph to the pylab plotter
591    graph.render(plotter)
592   
593    class GraphUpdate:
594        callnum=0
595        def __init__(self,graph,plotter):
596            self.graph,self.plotter = graph,plotter
597        def __call__(self):
598            if self.graph.changed(): 
599                self.graph.render(self.plotter)
600                return True
601            return False
602        def onIdle(self,event):
603            #print "On Idle checker %d"%(self.callnum)
604            self.callnum = self.callnum+1
605            if self.__call__(): 
606                pass # event.RequestMore()
607    update = GraphUpdate(graph,plotter)
608    frame.Bind(wx.EVT_IDLE,update.onIdle)
609    app.MainLoop()
610
611import sys; print sys.version
612if __name__ == "__main__":
613    demo_plotter(sample_graph())
614   
Note: See TracBrowser for help on using the repository browser.