[3e3ab46] | 1 | ################################################################################ |
---|
| 2 | #This software was developed by the University of Tennessee as part of the |
---|
| 3 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | #project funded by the US National Science Foundation. |
---|
| 5 | # |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | # |
---|
| 8 | #copyright 2009, University of Tennessee |
---|
| 9 | ################################################################################ |
---|
[e88ebfd] | 10 | import copy |
---|
[3e3ab46] | 11 | from sans.models.qsmearing import smear_selection |
---|
[d89f09b] | 12 | |
---|
[3e3ab46] | 13 | |
---|
| 14 | class FitProblemComponent(object): |
---|
| 15 | """ |
---|
| 16 | Inferface containing information to store data, model, range of data, etc... |
---|
| 17 | and retreive this information. This is an inferface |
---|
| 18 | for a fitProblem i.e relationship between data and model. |
---|
| 19 | """ |
---|
| 20 | def enable_smearing(self, flag=False): |
---|
| 21 | """ |
---|
| 22 | :param flag: bool.When flag is 1 get the computer smear value. When |
---|
| 23 | flag is 0 ingore smear value. |
---|
| 24 | """ |
---|
| 25 | def get_smearer(self): |
---|
| 26 | """ |
---|
| 27 | return smear object |
---|
| 28 | """ |
---|
| 29 | def save_model_name(self, name): |
---|
| 30 | """ |
---|
| 31 | """ |
---|
| 32 | def get_name(self): |
---|
| 33 | """ |
---|
| 34 | """ |
---|
| 35 | def set_model(self, model): |
---|
| 36 | """ |
---|
| 37 | associates each model with its new created name |
---|
| 38 | :param model: model selected |
---|
| 39 | :param name: name created for model |
---|
| 40 | """ |
---|
| 41 | def get_model(self): |
---|
| 42 | """ |
---|
| 43 | :return: saved model |
---|
| 44 | """ |
---|
| 45 | def set_theory_data(self, data): |
---|
| 46 | """ |
---|
| 47 | save a copy of the data select to fit |
---|
| 48 | :param data: data selected |
---|
| 49 | """ |
---|
| 50 | def get_theory_data(self): |
---|
| 51 | """ |
---|
| 52 | :return: list of data dList |
---|
| 53 | """ |
---|
| 54 | def set_fit_data(self, data): |
---|
| 55 | """ |
---|
| 56 | Store of list of data and create by create new fitproblem of each data |
---|
| 57 | id , if there was existing information about model, this information |
---|
| 58 | get copy to the new fitproblem |
---|
| 59 | :param data: list of data selected |
---|
| 60 | """ |
---|
| 61 | def get_fit_data(self): |
---|
| 62 | """ |
---|
| 63 | """ |
---|
| 64 | def set_model_param(self, name, value=None): |
---|
| 65 | """ |
---|
| 66 | Store the name and value of a parameter of this fitproblem's model |
---|
| 67 | :param name: name of the given parameter |
---|
| 68 | :param value: value of that parameter |
---|
| 69 | """ |
---|
[1b14795] | 70 | def set_param2fit(self, list): |
---|
| 71 | """ |
---|
| 72 | Store param names to fit (checked) |
---|
| 73 | :param list: list of the param names |
---|
| 74 | """ |
---|
| 75 | def get_param2fit(self): |
---|
| 76 | """ |
---|
| 77 | return the list param names to fit |
---|
| 78 | """ |
---|
[3e3ab46] | 79 | def get_model_param(self): |
---|
| 80 | """ |
---|
| 81 | return list of couple of parameter name and value |
---|
| 82 | """ |
---|
| 83 | def schedule_tofit(self, schedule=0): |
---|
| 84 | """ |
---|
| 85 | set schedule to true to decide if this fit must be performed |
---|
| 86 | """ |
---|
| 87 | def get_scheduled(self): |
---|
| 88 | """ |
---|
| 89 | return true or false if a problem as being schedule for fitting |
---|
| 90 | """ |
---|
| 91 | def set_range(self, qmin=None, qmax=None): |
---|
| 92 | """ |
---|
| 93 | set fitting range |
---|
| 94 | """ |
---|
| 95 | def get_range(self): |
---|
| 96 | """ |
---|
| 97 | :return: fitting range |
---|
| 98 | """ |
---|
[f7ef313] | 99 | def set_weight(self, flag=None): |
---|
[55bb249c] | 100 | """ |
---|
| 101 | set fitting range |
---|
| 102 | """ |
---|
| 103 | def get_weight(self): |
---|
| 104 | """ |
---|
| 105 | get fitting weight |
---|
| 106 | """ |
---|
[3e3ab46] | 107 | def clear_model_param(self): |
---|
| 108 | """ |
---|
| 109 | clear constraint info |
---|
| 110 | """ |
---|
| 111 | def set_fit_tab_caption(self, caption): |
---|
| 112 | """ |
---|
| 113 | store the caption of the page associated with object |
---|
| 114 | """ |
---|
| 115 | def get_fit_tab_caption(self): |
---|
| 116 | """ |
---|
| 117 | Return the caption of the page associated with object |
---|
| 118 | """ |
---|
[5e48acb] | 119 | def set_graph_id(self, id): |
---|
| 120 | """ |
---|
| 121 | Set graph id (from data_group_id at the time the graph produced) |
---|
| 122 | """ |
---|
| 123 | def get_graph_id(self): |
---|
| 124 | """ |
---|
| 125 | Get graph_id |
---|
| 126 | """ |
---|
[3e3ab46] | 127 | |
---|
| 128 | class FitProblemDictionary(FitProblemComponent, dict): |
---|
| 129 | """ |
---|
| 130 | This module implements a dictionary of fitproblem objects |
---|
| 131 | """ |
---|
| 132 | def __init__(self): |
---|
| 133 | FitProblemComponent.__init__(self) |
---|
| 134 | dict.__init__(self) |
---|
| 135 | ## the current model |
---|
| 136 | self.model = None |
---|
| 137 | ## if 1 this fit problem will be selected to fit , if 0 |
---|
| 138 | ## it will not be selected for fit |
---|
| 139 | self.schedule = 0 |
---|
| 140 | ##list containing parameter name and value |
---|
| 141 | self.list_param = [] |
---|
| 142 | ## fitting range |
---|
| 143 | self.qmin = None |
---|
| 144 | self.qmax = None |
---|
[5e48acb] | 145 | self.graph_id = None |
---|
[3e3ab46] | 146 | self._smear_on = False |
---|
| 147 | self.scheduled = 0 |
---|
| 148 | self.fit_tab_caption = '' |
---|
| 149 | |
---|
| 150 | def enable_smearing(self, flag=False, fid=None): |
---|
| 151 | """ |
---|
| 152 | :param flag: bool.When flag is 1 get the computer smear value. When |
---|
| 153 | flag is 0 ingore smear value. |
---|
| 154 | """ |
---|
| 155 | self._smear_on = flag |
---|
| 156 | if fid is None: |
---|
| 157 | for value in self.itervalues(): |
---|
| 158 | value.enable_smearing(flag) |
---|
| 159 | else: |
---|
| 160 | if fid in self.iterkeys(): |
---|
| 161 | self[fid].enable_smearing(flag) |
---|
| 162 | |
---|
| 163 | def set_smearer(self, smearer, fid=None): |
---|
| 164 | """ |
---|
| 165 | save reference of smear object on fitdata |
---|
| 166 | :param smear: smear object from DataLoader |
---|
| 167 | """ |
---|
| 168 | if fid is None: |
---|
| 169 | for value in self.itervalues(): |
---|
| 170 | value.set_smearer(smearer) |
---|
| 171 | else: |
---|
| 172 | if fid in self.iterkeys(): |
---|
| 173 | self[fid].set_smearer(smearer) |
---|
| 174 | |
---|
| 175 | def get_smearer(self, fid=None): |
---|
| 176 | """ |
---|
| 177 | return smear object |
---|
| 178 | """ |
---|
| 179 | result = [] |
---|
| 180 | if fid is None: |
---|
| 181 | for value in self.itervalues(): |
---|
| 182 | result.append(value.get_smearer()) |
---|
| 183 | else: |
---|
| 184 | if fid in self.iterkeys(): |
---|
| 185 | result.append(self[fid].get_smearer()) |
---|
| 186 | return result |
---|
| 187 | |
---|
| 188 | def save_model_name(self, name, fid=None): |
---|
| 189 | """ |
---|
| 190 | """ |
---|
| 191 | if fid is None: |
---|
| 192 | for value in self.itervalues(): |
---|
| 193 | value.save_model_name(name) |
---|
| 194 | else: |
---|
| 195 | if fid in self.iterkeys(): |
---|
| 196 | self[fid].save_model_name(name) |
---|
| 197 | |
---|
| 198 | def get_name(self, fid=None): |
---|
| 199 | """ |
---|
| 200 | """ |
---|
| 201 | result = [] |
---|
| 202 | if fid is None: |
---|
| 203 | for value in self.itervalues(): |
---|
| 204 | result.append(value.get_name()) |
---|
| 205 | else: |
---|
| 206 | if fid in self.iterkeys(): |
---|
| 207 | result.append(self[fid].get_name()) |
---|
| 208 | return result |
---|
| 209 | |
---|
| 210 | def set_model(self, model, fid=None): |
---|
| 211 | """ |
---|
| 212 | associates each model with its new created name |
---|
| 213 | :param model: model selected |
---|
| 214 | :param name: name created for model |
---|
| 215 | """ |
---|
| 216 | self.model = model |
---|
| 217 | if fid is None: |
---|
| 218 | for value in self.itervalues(): |
---|
| 219 | value.set_model(self.model) |
---|
| 220 | else: |
---|
| 221 | if fid in self.iterkeys(): |
---|
| 222 | self[fid].set_model(self.model) |
---|
| 223 | |
---|
| 224 | def get_model(self, fid): |
---|
| 225 | """ |
---|
| 226 | :return: saved model |
---|
| 227 | """ |
---|
| 228 | if fid in self.iterkeys(): |
---|
| 229 | self[fid].get_model() |
---|
| 230 | |
---|
| 231 | def set_fit_tab_caption(self, caption): |
---|
| 232 | """ |
---|
| 233 | store the caption of the page associated with object |
---|
| 234 | """ |
---|
| 235 | self.fit_tab_caption = caption |
---|
| 236 | |
---|
| 237 | def get_fit_tab_caption(self): |
---|
| 238 | """ |
---|
| 239 | Return the caption of the page associated with object |
---|
| 240 | """ |
---|
| 241 | return self.fit_tab_caption |
---|
| 242 | |
---|
| 243 | def set_theory_data(self, fid, data=None): |
---|
| 244 | """ |
---|
| 245 | save a copy of the data select to fit |
---|
| 246 | :param data: data selected |
---|
| 247 | """ |
---|
| 248 | if fid in self.iterkeys(): |
---|
| 249 | self[fid].set_theory_data(data) |
---|
| 250 | |
---|
| 251 | def get_theory_data(self, fid): |
---|
| 252 | """ |
---|
| 253 | :return: list of data dList |
---|
| 254 | """ |
---|
| 255 | if fid in self.iterkeys(): |
---|
| 256 | return self[fid].get_theory_data() |
---|
| 257 | |
---|
| 258 | def add_data(self, data): |
---|
| 259 | """ |
---|
| 260 | Add data to the current dictionary of fitproblem. if data id does not |
---|
| 261 | exist create a new fit problem. |
---|
| 262 | :note: only data changes in the fit problem |
---|
| 263 | """ |
---|
| 264 | if data.id not in self.iterkeys(): |
---|
| 265 | self[data.id] = FitProblem() |
---|
| 266 | self[data.id].set_fit_data(data) |
---|
| 267 | |
---|
| 268 | def set_fit_data(self, data): |
---|
| 269 | """ |
---|
| 270 | save a copy of the data select to fit |
---|
| 271 | :param data: data selected |
---|
| 272 | |
---|
| 273 | """ |
---|
| 274 | self.clear() |
---|
| 275 | if data is None: |
---|
| 276 | data = [] |
---|
| 277 | for d in data: |
---|
| 278 | if (d is not None): |
---|
| 279 | if (d.id not in self.iterkeys()): |
---|
| 280 | self[d.id] = FitProblem() |
---|
| 281 | self[d.id].set_fit_data(d) |
---|
| 282 | self[d.id].set_model(self.model) |
---|
| 283 | self[d.id].set_range(self.qmin, self.qmax) |
---|
[55bb249c] | 284 | #self[d.id].set_smearer(self[d.id].get_smearer()) |
---|
[3e3ab46] | 285 | def get_fit_data(self, fid): |
---|
| 286 | """ |
---|
| 287 | |
---|
| 288 | return data for the given fitproblem id |
---|
| 289 | :param fid: is key representing a fitproblem. usually extract from data |
---|
| 290 | id |
---|
| 291 | """ |
---|
| 292 | if fid in self.iterkeys(): |
---|
| 293 | return self[fid].get_fit_data() |
---|
| 294 | |
---|
| 295 | def set_model_param(self, name, value=None, fid=None): |
---|
| 296 | """ |
---|
| 297 | Store the name and value of a parameter of this fitproblem's model |
---|
| 298 | :param name: name of the given parameter |
---|
| 299 | :param value: value of that parameter |
---|
| 300 | """ |
---|
| 301 | if fid is None: |
---|
| 302 | for value in self.itervalues(): |
---|
| 303 | value.set_model_param(name, value) |
---|
| 304 | else: |
---|
| 305 | if fid in self.iterkeys(): |
---|
| 306 | self[fid].set_model_param(name, value) |
---|
| 307 | |
---|
| 308 | def get_model_param(self, fid): |
---|
| 309 | """ |
---|
| 310 | return list of couple of parameter name and value |
---|
| 311 | """ |
---|
| 312 | if fid in self.iterkeys(): |
---|
| 313 | return self[fid].get_model_param() |
---|
[1b14795] | 314 | |
---|
| 315 | def set_param2fit(self, list): |
---|
| 316 | """ |
---|
| 317 | Store param names to fit (checked) |
---|
| 318 | :param list: list of the param names |
---|
| 319 | """ |
---|
| 320 | self.list_param2fit = list |
---|
| 321 | |
---|
| 322 | def get_param2fit(self): |
---|
| 323 | """ |
---|
| 324 | return the list param names to fit |
---|
| 325 | """ |
---|
| 326 | return self.list_param2fit |
---|
| 327 | |
---|
[3e3ab46] | 328 | def schedule_tofit(self, schedule=0): |
---|
| 329 | """ |
---|
| 330 | set schedule to true to decide if this fit must be performed |
---|
| 331 | """ |
---|
| 332 | self.scheduled = schedule |
---|
| 333 | for value in self.itervalues(): |
---|
| 334 | value.schedule_tofit(schedule) |
---|
| 335 | |
---|
| 336 | def get_scheduled(self): |
---|
| 337 | """ |
---|
| 338 | return true or false if a problem as being schedule for fitting |
---|
| 339 | """ |
---|
| 340 | return self.scheduled |
---|
| 341 | |
---|
| 342 | def set_range(self, qmin=None, qmax=None, fid=None): |
---|
| 343 | """ |
---|
| 344 | set fitting range |
---|
| 345 | """ |
---|
| 346 | self.qmin = qmin |
---|
| 347 | self.qmax = qmax |
---|
| 348 | if fid is None: |
---|
| 349 | for value in self.itervalues(): |
---|
| 350 | value.set_range(self.qmin, self.qmax) |
---|
| 351 | else: |
---|
| 352 | if fid in self.iterkeys(): |
---|
| 353 | self[fid].value.set_range(self.qmin, self.qmax) |
---|
| 354 | |
---|
| 355 | def get_range(self, fid): |
---|
| 356 | """ |
---|
| 357 | :return: fitting range |
---|
| 358 | """ |
---|
| 359 | if fid in self.iterkeys(): |
---|
| 360 | return self[fid].get_range() |
---|
| 361 | |
---|
[f7ef313] | 362 | def set_weight(self, is2d, flag=None, fid=None): |
---|
[55bb249c] | 363 | """ |
---|
| 364 | fit weight |
---|
| 365 | """ |
---|
| 366 | if fid is None: |
---|
| 367 | for value in self.itervalues(): |
---|
[f7ef313] | 368 | value.set_weight(flag=flag, is2d=is2d) |
---|
[55bb249c] | 369 | else: |
---|
| 370 | if fid in self.iterkeys(): |
---|
[f7ef313] | 371 | self[fid].set_weight(flag=flag, is2d=is2d) |
---|
[55bb249c] | 372 | |
---|
| 373 | def get_weight(self, fid=None): |
---|
| 374 | """ |
---|
| 375 | return fit weight |
---|
| 376 | """ |
---|
| 377 | if fid in self.iterkeys(): |
---|
| 378 | return self[fid].get_weight() |
---|
| 379 | |
---|
[3e3ab46] | 380 | def clear_model_param(self, fid=None): |
---|
| 381 | """ |
---|
| 382 | clear constraint info |
---|
| 383 | """ |
---|
| 384 | if fid is None: |
---|
| 385 | for value in self.itervalues(): |
---|
| 386 | value.clear_model_param() |
---|
| 387 | else: |
---|
| 388 | if fid in self.iterkeys(): |
---|
| 389 | self[fid].clear_model_param() |
---|
| 390 | |
---|
| 391 | def get_fit_problem(self): |
---|
| 392 | """ |
---|
| 393 | return fitproblem contained in this dictionary |
---|
| 394 | """ |
---|
| 395 | return self.itervalues() |
---|
| 396 | |
---|
| 397 | def set_result(self, result): |
---|
| 398 | """ |
---|
| 399 | set a list of result |
---|
| 400 | """ |
---|
| 401 | self.result = result |
---|
| 402 | |
---|
| 403 | def get_result(self): |
---|
| 404 | """ |
---|
| 405 | get result |
---|
| 406 | """ |
---|
| 407 | return self.result |
---|
| 408 | |
---|
[5e48acb] | 409 | def set_graph_id(self, id): |
---|
| 410 | """ |
---|
| 411 | Set graph id (from data_group_id at the time the graph produced) |
---|
| 412 | """ |
---|
| 413 | self.graph_id = id |
---|
| 414 | |
---|
| 415 | def get_graph_id(self): |
---|
| 416 | """ |
---|
| 417 | Get graph_id |
---|
| 418 | """ |
---|
| 419 | return self.graph_id |
---|
| 420 | |
---|
| 421 | |
---|
[3e3ab46] | 422 | class FitProblem(FitProblemComponent): |
---|
[d89f09b] | 423 | """ |
---|
[5062bbf] | 424 | FitProblem class allows to link a model with the new name created in _on_model, |
---|
| 425 | a name theory created with that model and the data fitted with the model. |
---|
| 426 | FitProblem is mostly used as value of the dictionary by fitting module. |
---|
[d89f09b] | 427 | """ |
---|
| 428 | def __init__(self): |
---|
[3e3ab46] | 429 | FitProblemComponent.__init__(self) |
---|
[d89f09b] | 430 | """ |
---|
[5062bbf] | 431 | contains information about data and model to fit |
---|
[d89f09b] | 432 | """ |
---|
[925a30e] | 433 | ## data used for fitting |
---|
[6bbeacd4] | 434 | self.fit_data = None |
---|
| 435 | self.theory_data = None |
---|
[05325ec4] | 436 | # original data: should not be modified |
---|
| 437 | self.original_data = None |
---|
[2140e68] | 438 | ## the current model |
---|
| 439 | self.model = None |
---|
[925a30e] | 440 | ## if 1 this fit problem will be selected to fit , if 0 |
---|
| 441 | ## it will not be selected for fit |
---|
[6bbeacd4] | 442 | self.schedule = 0 |
---|
[925a30e] | 443 | ##list containing parameter name and value |
---|
[6bbeacd4] | 444 | self.list_param = [] |
---|
[925a30e] | 445 | ## smear object to smear or not data1D |
---|
[7afcae8] | 446 | self.smearer_computed = False |
---|
[3e3ab46] | 447 | self.smearer_enable = False |
---|
| 448 | self.smearer_computer_value = None |
---|
[2140e68] | 449 | ## fitting range |
---|
| 450 | self.qmin = None |
---|
| 451 | self.qmax = None |
---|
[55bb249c] | 452 | # fit weight |
---|
| 453 | self.weight = None |
---|
[08b9c6c8] | 454 | |
---|
[ba1f0b2] | 455 | |
---|
[3e3ab46] | 456 | def enable_smearing(self, flag=False): |
---|
[9853ad0] | 457 | """ |
---|
[3e3ab46] | 458 | :param flag: bool.When flag is 1 get the computer smear value. When |
---|
| 459 | flag is 0 ingore smear value. |
---|
[9853ad0] | 460 | """ |
---|
[3e3ab46] | 461 | self.smearer_enable = flag |
---|
[9853ad0] | 462 | |
---|
[08b9c6c8] | 463 | def set_smearer(self, smearer): |
---|
[925a30e] | 464 | """ |
---|
[5062bbf] | 465 | save reference of smear object on fitdata |
---|
| 466 | |
---|
| 467 | :param smear: smear object from DataLoader |
---|
| 468 | |
---|
[925a30e] | 469 | """ |
---|
[3e3ab46] | 470 | self.smearer_computer_value = smearer |
---|
[925a30e] | 471 | |
---|
[08b9c6c8] | 472 | def get_smearer(self): |
---|
[925a30e] | 473 | """ |
---|
[5062bbf] | 474 | return smear object |
---|
[925a30e] | 475 | """ |
---|
[3e3ab46] | 476 | if not self.smearer_enable: |
---|
| 477 | return None |
---|
[7afcae8] | 478 | if not self.smearer_computed: |
---|
[3e3ab46] | 479 | #smeari_selection should be call only once per fitproblem |
---|
[7afcae8] | 480 | self.smearer_computer_value = smear_selection(self.fit_data, |
---|
[3e3ab46] | 481 | self.model) |
---|
[7afcae8] | 482 | self.smearer_computed = True |
---|
[3e3ab46] | 483 | return self.smearer_computer_value |
---|
[08b9c6c8] | 484 | |
---|
[5062bbf] | 485 | def save_model_name(self, name): |
---|
| 486 | """ |
---|
| 487 | """ |
---|
[bb18ef1] | 488 | self.name_per_page= name |
---|
| 489 | |
---|
| 490 | def get_name(self): |
---|
[5062bbf] | 491 | """ |
---|
| 492 | """ |
---|
[bb18ef1] | 493 | return self.name_per_page |
---|
[08b9c6c8] | 494 | |
---|
[8aa5788] | 495 | def set_model(self, model): |
---|
[d89f09b] | 496 | """ |
---|
[5062bbf] | 497 | associates each model with its new created name |
---|
| 498 | :param model: model selected |
---|
| 499 | :param name: name created for model |
---|
[d89f09b] | 500 | """ |
---|
[7afcae8] | 501 | self.model = model |
---|
| 502 | self.smearer_computer_value = smear_selection(self.fit_data, |
---|
| 503 | self.model) |
---|
| 504 | self.smearer_computed = True |
---|
[bb18ef1] | 505 | |
---|
[2140e68] | 506 | def get_model(self): |
---|
[5062bbf] | 507 | """ |
---|
| 508 | :return: saved model |
---|
| 509 | """ |
---|
[2140e68] | 510 | return self.model |
---|
| 511 | |
---|
[6bbeacd4] | 512 | def set_theory_data(self, data): |
---|
[d89f09b] | 513 | """ |
---|
[5062bbf] | 514 | save a copy of the data select to fit |
---|
| 515 | |
---|
| 516 | :param data: data selected |
---|
| 517 | |
---|
[d89f09b] | 518 | """ |
---|
[e88ebfd] | 519 | self.theory_data = copy.deepcopy(data) |
---|
[ba1f0b2] | 520 | |
---|
[3e3ab46] | 521 | |
---|
[ba1f0b2] | 522 | |
---|
[6bbeacd4] | 523 | def get_theory_data(self): |
---|
[5062bbf] | 524 | """ |
---|
[3e3ab46] | 525 | :return: theory generated with the current model and data of this class |
---|
[5062bbf] | 526 | """ |
---|
[6bbeacd4] | 527 | return self.theory_data |
---|
[5062bbf] | 528 | |
---|
[3e3ab46] | 529 | def set_fit_data(self, data): |
---|
[2a8fac1] | 530 | """ |
---|
[3e3ab46] | 531 | Store data associated with this class |
---|
| 532 | :param data: list of data selected |
---|
[2a8fac1] | 533 | """ |
---|
[05325ec4] | 534 | # original data: should not be modified |
---|
| 535 | self.original_data = copy.deepcopy(data) |
---|
| 536 | # fit data: used for fit and can be modified for convenience |
---|
[55bb249c] | 537 | self.fit_data = copy.deepcopy(data) |
---|
[7afcae8] | 538 | self.smearer_computer_value = smear_selection(self.fit_data, |
---|
| 539 | self.model) |
---|
| 540 | self.smearer_computed = True |
---|
[f7ef313] | 541 | |
---|
[2a8fac1] | 542 | def get_fit_data(self): |
---|
[5062bbf] | 543 | """ |
---|
[3e3ab46] | 544 | :return: data associate with this class |
---|
[5062bbf] | 545 | """ |
---|
[2a8fac1] | 546 | return self.fit_data |
---|
| 547 | |
---|
[f7ef313] | 548 | def set_weight(self, is2d, flag=None): |
---|
[55bb249c] | 549 | """ |
---|
[f7ef313] | 550 | Received flag and compute error on data. |
---|
| 551 | :param flag: flag to transform error of data. |
---|
| 552 | :param is2d: flag to distinguish 1D to 2D Data |
---|
[55bb249c] | 553 | """ |
---|
[f7ef313] | 554 | from .utils import get_weight |
---|
[05325ec4] | 555 | # send original data for weighting |
---|
| 556 | self.weight = get_weight(data=self.original_data, is2d=is2d, flag=flag) |
---|
[55bb249c] | 557 | if is2d: |
---|
| 558 | self.fit_data.err_data = self.weight |
---|
| 559 | else: |
---|
| 560 | self.fit_data.dy = self.weight |
---|
| 561 | |
---|
| 562 | def get_weight(self): |
---|
| 563 | """ |
---|
| 564 | returns weight array |
---|
| 565 | """ |
---|
| 566 | return self.weight |
---|
[1b14795] | 567 | |
---|
| 568 | def set_param2fit(self, list): |
---|
| 569 | """ |
---|
| 570 | Store param names to fit (checked) |
---|
| 571 | :param list: list of the param names |
---|
| 572 | """ |
---|
| 573 | self.list_param2fit = list |
---|
[55bb249c] | 574 | |
---|
[1b14795] | 575 | def get_param2fit(self): |
---|
| 576 | """ |
---|
| 577 | return the list param names to fit |
---|
| 578 | """ |
---|
| 579 | return self.list_param2fit |
---|
| 580 | |
---|
[2140e68] | 581 | def set_model_param(self,name,value=None): |
---|
[d89f09b] | 582 | """ |
---|
[5062bbf] | 583 | Store the name and value of a parameter of this fitproblem's model |
---|
| 584 | :param name: name of the given parameter |
---|
| 585 | :param value: value of that parameter |
---|
[d89f09b] | 586 | """ |
---|
[8e81af0] | 587 | self.list_param.append([name,value]) |
---|
[925a30e] | 588 | |
---|
[00561739] | 589 | def get_model_param(self): |
---|
| 590 | """ |
---|
[5062bbf] | 591 | return list of couple of parameter name and value |
---|
[00561739] | 592 | """ |
---|
[8e81af0] | 593 | return self.list_param |
---|
[d89f09b] | 594 | |
---|
[948add7] | 595 | def schedule_tofit(self, schedule=0): |
---|
[3b19ac9] | 596 | """ |
---|
[5062bbf] | 597 | set schedule to true to decide if this fit must be performed |
---|
[3b19ac9] | 598 | """ |
---|
[3e3ab46] | 599 | self.schedule = schedule |
---|
[6bcdad1] | 600 | |
---|
[3b19ac9] | 601 | def get_scheduled(self): |
---|
[5062bbf] | 602 | """ |
---|
| 603 | return true or false if a problem as being schedule for fitting |
---|
| 604 | """ |
---|
[3b19ac9] | 605 | return self.schedule |
---|
[925a30e] | 606 | |
---|
[2140e68] | 607 | def set_range(self, qmin=None, qmax=None): |
---|
| 608 | """ |
---|
[3e3ab46] | 609 | set fitting range |
---|
| 610 | :param qmin: minimum value to consider for the fit range |
---|
| 611 | :param qmax: maximum value to consider for the fit range |
---|
[2140e68] | 612 | """ |
---|
| 613 | self.qmin = qmin |
---|
| 614 | self.qmax = qmax |
---|
| 615 | |
---|
| 616 | def get_range(self): |
---|
| 617 | """ |
---|
[5062bbf] | 618 | :return: fitting range |
---|
| 619 | |
---|
[2140e68] | 620 | """ |
---|
| 621 | return self.qmin, self.qmax |
---|
[925a30e] | 622 | |
---|
[9e27de9] | 623 | def clear_model_param(self): |
---|
| 624 | """ |
---|
| 625 | clear constraint info |
---|
| 626 | """ |
---|
[3e3ab46] | 627 | self.list_param = [] |
---|
[6bbeacd4] | 628 | |
---|
| 629 | def set_fit_tab_caption(self, caption): |
---|
| 630 | """ |
---|
| 631 | """ |
---|
| 632 | self.fit_tab_caption = str(caption) |
---|
| 633 | |
---|
| 634 | def get_fit_tab_caption(self): |
---|
| 635 | """ |
---|
| 636 | """ |
---|
| 637 | return self.fit_tab_caption |
---|
[ba1f0b2] | 638 | |
---|
[5e48acb] | 639 | def set_graph_id(self, id): |
---|
| 640 | """ |
---|
| 641 | Set graph id (from data_group_id at the time the graph produced) |
---|
| 642 | """ |
---|
| 643 | self.graph_id = id |
---|
| 644 | |
---|
| 645 | def get_graph_id(self): |
---|
| 646 | """ |
---|
| 647 | Get graph_id |
---|
| 648 | """ |
---|
| 649 | return self.graph_id |
---|
[5062bbf] | 650 | |
---|