1 | |
---|
2 | <head> |
---|
3 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
4 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
5 | |
---|
6 | </head> |
---|
7 | |
---|
8 | <body lang=EN-US> |
---|
9 | |
---|
10 | <div class=WordSection1> |
---|
11 | |
---|
12 | <p class=MsoNormal><span style='font-size:16.0pt;line-height:115%;font-family: |
---|
13 | "Times New Roman","serif"'><h4>Smear Computation </h4></span></p> |
---|
14 | |
---|
15 | |
---|
16 | <ul style='margin-top:0in' type=disc> |
---|
17 | <li class=MsoNormal style='line-height:115%'><a href="#Slit Smear"><b>Slit Smear</b></a> |
---|
18 | </li> |
---|
19 | <li class=MsoNormal style='line-height:115%'><a href="#Pinhole Smear"><b>Pinhole Smear</b></a> |
---|
20 | </li> |
---|
21 | <li class=MsoNormal style='line-height:115%'><a href="#2D Smear"><b>2D Smear</b></a> |
---|
22 | </li> |
---|
23 | </ul> |
---|
24 | |
---|
25 | <p class=MsoListParagraph><span style='font-size:14.0pt;line-height:115%; |
---|
26 | font-family:"Times New Roman","serif"'><h5><a name="Slit Smear">Slit Smear</a></h5></span></p> |
---|
27 | |
---|
28 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The sit |
---|
29 | smeared scattering intensity for SAS is defined by</span></p> |
---|
30 | |
---|
31 | <p class=MsoNormal><img |
---|
32 | src="img/sm_image002.gif" align=left hspace=12></p> |
---|
33 | |
---|
34 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> |
---|
35 | ---- 1)</span><br clear=all> |
---|
36 | <span style='font-family:"Times New Roman","serif"'>where Norm = <span |
---|
37 | style='position:relative;top:15.0pt'><img |
---|
38 | src="img/sm_image003.gif"></span>.</span></p> |
---|
39 | <br> |
---|
40 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
41 | functions <span style='position:relative;top:6.0pt'><img |
---|
42 | src="img/sm_image004.gif"></span> and <span style='position: |
---|
43 | relative;top:6.0pt'><img |
---|
44 | src="img/sm_image005.gif"></span> refer to the slit width weighting |
---|
45 | function and the slit height weighting determined at the q point, respectively. |
---|
46 | Here, we assumes that the weighting function is described by a rectangular |
---|
47 | function, i.e.,</span></p> |
---|
48 | |
---|
49 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img |
---|
50 | src="img/sm_image006.gif"> |
---|
51 | </span><span style='font-family:"Times New Roman","serif";position:relative; |
---|
52 | top:7.0pt'> ---- 2)</span></p> |
---|
53 | |
---|
54 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>and </span></p> |
---|
55 | |
---|
56 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img |
---|
57 | src="img/sm_image007.gif"></span>, |
---|
58 | <span style='font-family:"Times New Roman","serif"'> ---- 3)</span></p> |
---|
59 | |
---|
60 | <p>so that <img |
---|
61 | src="img/sm_image008.gif"> <img src="img/sm_image009.gif"> for <img |
---|
62 | src="img/sm_image010.gif"> and <i>u</i>. The <img src="img/sm_image011.gif"> |
---|
63 | and <img src="img/sm_image012.gif"> stand for the slit height (FWHM/2) and the slit |
---|
64 | width (FWHM/2) in the q space. Now the integral of Eq. (1) is simplified to</span></p> |
---|
65 | |
---|
66 | <p class=MsoNormal><img |
---|
67 | src="img/sm_image013.gif" align=left hspace=12><span |
---|
68 | style='font-family:"Times New Roman","serif"'> |
---|
69 | ---- 4)</span></p> |
---|
70 | |
---|
71 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"; |
---|
72 | position:relative;top:20.0pt'> </span></p> |
---|
73 | |
---|
74 | <p class=MsoListParagraphCxSpFirst style='margin-left:0in'><b><span |
---|
75 | style='font-family:"Times New Roman","serif"'>Numerical Implementation of Eq. |
---|
76 | (4) </span></b></p> |
---|
77 | |
---|
78 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
79 | style='font-family:"Times New Roman","serif"'>1)<span style='font:7.0pt "Times New Roman"'> |
---|
80 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
81 | style='position:relative;top:6.0pt'><img |
---|
82 | src="img/sm_image012.gif"></span>= 0 <span style='font-family: |
---|
83 | "Times New Roman","serif"'>and </span><span style='position:relative; |
---|
84 | top:6.0pt'><img src="img/sm_image011.gif"></span> = |
---|
85 | <span style='font-family:"Times New Roman","serif"'>constant:</span></p> |
---|
86 | |
---|
87 | <p> |
---|
88 | <img src="img/sm_image016.gif"></p> |
---|
89 | |
---|
90 | <p> For discrete q values, at the q |
---|
91 | values from the data points and at the q values extended up to q<sub>N</sub>= |
---|
92 | q<sub>i</sub> + <img src="img/sm_image011.gif"> , the smeared intensity can be |
---|
93 | calculated approximately, </p> |
---|
94 | |
---|
95 | <p><img |
---|
96 | src="img/sm_image017.gif">. |
---|
97 | ---- 5)</p> |
---|
98 | |
---|
99 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
100 | style='position:relative;top:7.0pt'><img |
---|
101 | src="img/sm_image018.gif"></span> <span style='font-family: |
---|
102 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
103 | style='font-family:"Times New Roman","serif"'>j < i</span></i><span |
---|
104 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
105 | |
---|
106 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
107 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
108 | |
---|
109 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
110 | style='font-family:"Times New Roman","serif"'>2)<span style='font:7.0pt "Times New Roman"'> |
---|
111 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
112 | style='position:relative;top:6.0pt'><img |
---|
113 | src="img/sm_image012.gif"></span>= <span style='font-family: |
---|
114 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
115 | </span><span style='position:relative;top:6.0pt'><img |
---|
116 | src="img/sm_image011.gif"></span> = <span style='font-family: |
---|
117 | "Times New Roman","serif"'>0:</span></p> |
---|
118 | |
---|
119 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
120 | style='font-family:"Times New Roman","serif"'>Similarly to 1), we get</span></p> |
---|
121 | |
---|
122 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
123 | <img src="img/sm_image019.gif"> |
---|
124 | <span style='font-family:"Times New Roman","serif"'> ---- 6)</span></p> |
---|
125 | |
---|
126 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
127 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
128 | - </span><span style='position:relative;top:6.0pt'><img |
---|
129 | src="img/sm_image012.gif"></span><span style='font-family: |
---|
130 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
131 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
132 | src="img/sm_image012.gif"></span>. <span |
---|
133 | style='position:relative;top:7.0pt'><img |
---|
134 | src="img/sm_image018.gif"></span> <span style='font-family: |
---|
135 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
136 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
137 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
138 | |
---|
139 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> |
---|
140 | |
---|
141 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
142 | style='font-family:"Times New Roman","serif"'>3)<span style='font:7.0pt "Times New Roman"'> |
---|
143 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
144 | style='position:relative;top:6.0pt'><img |
---|
145 | src="img/sm_image011.gif"></span>= <span style='font-family: |
---|
146 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
147 | </span><span style='position:relative;top:6.0pt'><img |
---|
148 | src="img/sm_image011.gif"></span> = <span style='font-family: |
---|
149 | "Times New Roman","serif"'>constant:</span></p> |
---|
150 | |
---|
151 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
152 | style='font-family:"Times New Roman","serif"'>This case, the best way is to |
---|
153 | perform the integration, Eq. (1), numerically for both slit height and width. |
---|
154 | However, the numerical integration is not correct enough unless given a large |
---|
155 | number of iteration, say at least 10000 by 10000 for each element of the matrix |
---|
156 | W, which will take minutes and minutes to finish the calculation for a set of |
---|
157 | typical SAS data. An alternative way which is correct for slit width << |
---|
158 | slit hight, is used in the SASView: This method is a mixed method that |
---|
159 | combines the method 1) with the numerical integration for the slit width.</span></p> |
---|
160 | |
---|
161 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
162 | </p> |
---|
163 | |
---|
164 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
165 | <img src="img/sm_image020.gif"> <span style='font-family: |
---|
166 | "Times New Roman","serif"'> ---- (7)</span></p> |
---|
167 | |
---|
168 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
169 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
170 | - </span><span style='position:relative;top:6.0pt'><img |
---|
171 | src="img/sm_image012.gif"></span><span style='font-family: |
---|
172 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
173 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
174 | src="img/sm_image012.gif"></span>. <span |
---|
175 | style='position:relative;top:7.0pt'><img |
---|
176 | src="img/sm_image018.gif"></span> <span style='font-family: |
---|
177 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
178 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
179 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>. </span></p> |
---|
180 | |
---|
181 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
182 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
183 | |
---|
184 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
185 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
186 | |
---|
187 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
188 | 115%;font-family:"Times New Roman","serif"'><h5><a name="Pinhole Smear">Pinhole Smear</a></h5></span></p> |
---|
189 | |
---|
190 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
191 | pinhole smearing computation is done similar to the Case 2) above except that |
---|
192 | the weight function used was the Gaussian function, so that the Eq. 6) for this |
---|
193 | case becomes</span></p> |
---|
194 | |
---|
195 | <p class=MsoNormal><img src="img/sm_image021.gif"><span |
---|
196 | style='font-family:"Times New Roman","serif"'> ---- (8)</span></p> |
---|
197 | |
---|
198 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>For all |
---|
199 | the cases above, the weighting matrix <i>W</i> is calculated when the smearing |
---|
200 | is called at the first time, and it includes the ~ 60 q values (finely binned |
---|
201 | evenly) below (>0) and above the q range of data in order to cover all data |
---|
202 | points of the smearing computation for a given model and for a given slit size. |
---|
203 | The <i>Norm</i> factor is found numerically with the weighting matrix, and |
---|
204 | considered on <i>I<sub>s</sub></i> computation.</span></p> |
---|
205 | |
---|
206 | <p class=MsoListParagraphCxSpFirst style='margin-left:.25in'><span |
---|
207 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
208 | |
---|
209 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
210 | 115%;font-family:"Times New Roman","serif"'><h5><a name="2D Smear">2D Smear</a></h5></span></p> |
---|
211 | |
---|
212 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
213 | 2D smearing computation is done similar to the 1D pinhole smearing above |
---|
214 | except that the weight function used was the 2D elliptical Gaussian function</span></p> |
---|
215 | |
---|
216 | <p class=MsoNormal><img src="img/sm_image022.gif"><span |
---|
217 | style='font-family:"Times New Roman","serif"'> ---- (9)</span></p> |
---|
218 | |
---|
219 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq |
---|
220 | (9), x<sub>0</sub> = qcosθ</span><span |
---|
221 | style='font-family:"Times New Roman","serif"'> and y<sub>0</sub> = qsinθ</span><span style='font-family:"Times New Roman","serif"'> |
---|
222 | , and the primed axes are in the coordinate rotated by an angle θ</span><span style='font-family:"Times New Roman","serif"'> |
---|
223 | around z-axis (below) so that x<sub>0</sub> = x<sub>0</sub>cosθ + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
224 | sinθ </span><span style='font-family: |
---|
225 | "Times New Roman","serif"'>and y<sub>0</sub> = -x<sub>0</sub>sinθ + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
226 | cosθ.</span><span style='font-family: |
---|
227 | "Times New Roman","serif"'> Note that the rotation angle is zero for x-y |
---|
228 | symmetric elliptical Gaussian distribution</span>. |
---|
229 | <span style='font-family:"Times New Roman","serif"'>The A is a |
---|
230 | normalization factor.</span></p> |
---|
231 | |
---|
232 | <p class=MsoNormal align=center style='text-align:center'><span |
---|
233 | style='font-family:"Times New Roman","serif"'><img |
---|
234 | id="Object 1" src="img/sm_image023.gif"></span></p> |
---|
235 | |
---|
236 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> </span></p> |
---|
237 | |
---|
238 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we |
---|
239 | consider a numerical integration where each bins in </span> Θ </span><span style='font-family:"Times New Roman","serif"'> |
---|
240 | and R are <b>evenly </b>(this is to simplify the equation below) distributed by |
---|
241 | </span>ΔΘ </span><span style='font-family: |
---|
242 | "Times New Roman","serif"'>and </span> Δ</span><span |
---|
243 | style='font-family:"Times New Roman","serif"'>R, respectively, and it is |
---|
244 | assumed that I(x, y) is constant within the bins which in turn becomes</span></p> |
---|
245 | |
---|
246 | <p class=MsoNormal><img src="img/sm_image024.gif"></p> |
---|
247 | |
---|
248 | <p class=MsoNormal> <span |
---|
249 | style='font-family:"Times New Roman","serif"'> ---- (10)</span></p> |
---|
250 | |
---|
251 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Since we |
---|
252 | have found the weighting factor on each bin points, it is convenient to |
---|
253 | transform x-y back to x-y coordinate (rotating it by -θ</span><span style='font-family:"Times New Roman","serif"'> |
---|
254 | around z axis). Then, for the polar symmetric smear,</span></p> |
---|
255 | |
---|
256 | <p class=MsoNormal><img src="img/sm_image025.gif"><span |
---|
257 | style='position:relative;top:35.0pt'> </span> ---- (11)</p> |
---|
258 | |
---|
259 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
260 | |
---|
261 | <p class=MsoNormal><img src="img/sm_image026.gif">,</p> |
---|
262 | |
---|
263 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>while |
---|
264 | for the x-y symmetric smear,</span></p> |
---|
265 | |
---|
266 | <p class=MsoNormal><img src="img/sm_image027.gif"><span |
---|
267 | style='font-family:"Times New Roman","serif"'> ---- (12)</span></p> |
---|
268 | |
---|
269 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
270 | |
---|
271 | <p class=MsoNormal><img src="img/sm_image028.gif"></p> |
---|
272 | |
---|
273 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Here, the |
---|
274 | current version of the SASVIEW uses the Eq. (11) for 2D smearing assuming that |
---|
275 | all the Gaussian weighting functions are aligned in the polar coordinate. </span></p> |
---|
276 | <p> In the control panel, the higher accuracy indicates more and finer binnng points |
---|
277 | so that it costs more in time. </p> |
---|
278 | |
---|
279 | |
---|
280 | </div> |
---|
281 | |
---|
282 | </body> |
---|
283 | |
---|