1 | <html> |
---|
2 | <body> |
---|
3 | <h4>SAS Q Resolution Estimator</h4> |
---|
4 | <ul> |
---|
5 | <li><a href="#Description">Description</a></li> |
---|
6 | <li><a href="#HowTo">HowTo?</a></li> |
---|
7 | <li><a href="#Theory">Theory</a></li> |
---|
8 | <li><a href="#References">References</a></li> |
---|
9 | </ul> |
---|
10 | <h5><a name="Description">Description</a></h5> |
---|
11 | <p> |
---|
12 | This tool is to approximately estimate the resolution of Q based on the |
---|
13 | SAS instrumental parameter values assuming that the detector is flat |
---|
14 | and vertical to the incident beam direction. |
---|
15 | </p> |
---|
16 | |
---|
17 | |
---|
18 | <h5><a name="HowTo">HowTo?</a></h5> |
---|
19 | <p> |
---|
20 | 1. Select the source and source type (Monochromatic or TOF). |
---|
21 | Note that the computational difference between the sources is |
---|
22 | only the gravitational contribution due to the mass.</p> |
---|
23 | <p> |
---|
24 | 2. Change the default values of the instrumental parameters as desired.</p> |
---|
25 | <p> |
---|
26 | 3. The input formats of wavelength and its spread (=FWHM/wavelength) depend on the source type. |
---|
27 | <li>For monochromatic wave, the inputs are just one values as shown with the defaults.</li> |
---|
28 | <li>For TOF, the min and max values should be separated by "-" to describe the wavelength band range. |
---|
29 | Optionally, the input of the wavelength (NOT of the wavelength spread) |
---|
30 | could be extended by adding "; ##" where the ## is the number |
---|
31 | of the bins for the numerical integration. |
---|
32 | Otherwise, the default value "10" bins will be used. |
---|
33 | The same number of bins will be used for the corresponding wavelength spread in either cases.</li> |
---|
34 | </p> |
---|
35 | <p>4. For TOF, the default wavelength spectrum is flat. |
---|
36 | The custom spectrum file (with 2 column text: wavelength(A) vs. intensity) |
---|
37 | can also be loaded by selecting "Add new" in the combobox.</p> |
---|
38 | <p> |
---|
39 | 5. Once set all the input values, click the compute button. |
---|
40 | Depending on computation loads the calculation time will vary. |
---|
41 | </p> |
---|
42 | <p> |
---|
43 | 6. 1D and 2D dQ will be displayed in the text-box at the bottom of |
---|
44 | the panel. Two dimensional resolution weight distribution |
---|
45 | (2D elliptical Gaussian function) will also be |
---|
46 | displayed in the plot panel even if the Q inputs are outside |
---|
47 | of the detector limit. |
---|
48 | The red lines indicate the limits of the detector (if a green lines appear (for TOF), |
---|
49 | it indicates the limits of the maximum q range for the largest wavelength |
---|
50 | due to the size of the detector). Note that the effect from the beam block is ignored, |
---|
51 | so in the small q region near the beam block [ie., q < 2*pi*(beam block diameter) / (sample to detector distance) / lamda_min] |
---|
52 | the variance is slightly under estimated.</p> |
---|
53 | <p>7. The summary can be accessed by clicking the 'light-bulb' icon |
---|
54 | at the bottom of the SasView main window. |
---|
55 | </p> |
---|
56 | <p><img src="resolution_tutor.gif"> |
---|
57 | </p> |
---|
58 | <h5><a name="Theory">Theory</a></h5> |
---|
59 | <p> |
---|
60 | The scattering wave transfer vector is by definition, |
---|
61 | <img src="q.gif"> |
---|
62 | </p> |
---|
63 | <p>In the limit of the small angle, the variance of q in the first order approximation is</p> |
---|
64 | <p> |
---|
65 | <img src="sigma_q.gif"> |
---|
66 | </p> |
---|
67 | In summary, the geometric and gravitational contributions depending on the shape of each factors can be expressed |
---|
68 | as shown the table.</p> |
---|
69 | <p> |
---|
70 | <img src="sigma_table.gif"> |
---|
71 | </p> |
---|
72 | <p> |
---|
73 | Finally, we use a Gaussian function to describe the 2D weighting distribution of the uncertainty in q. |
---|
74 | </p> |
---|
75 | <p/> |
---|
76 | <h5><a name="References">References</a></h5> |
---|
77 | <p> |
---|
78 | D.F.R. Mildner and J.M. Carpenter, J. Appl. Cryst. 17, 249-256 (1984).</p> |
---|
79 | <p> |
---|
80 | D.F.R. Mildner, J.M. Carpenter and D.L. Worcester, J. Appl. Cryst. 19, 311-319 (1986).</p> |
---|
81 | </body> |
---|
82 | |
---|
83 | </html> |
---|