1 | <body> |
---|
2 | <br> |
---|
3 | <p><a name="magnetic"></a><strong><span style="font-size: 14pt;"> Polarization and Magnetic Scattering</span></strong></p> |
---|
4 | <br> |
---|
5 | <br> |
---|
6 | The magnetic scattering is implemented in five (2D) models, SphereModel, CoreShellModel, |
---|
7 | CoreMultiShellModel, CylinderModel, and ParallelepipedModel. |
---|
8 | In general, the scattering length density (SLD) in each regions where the SLD (=β) |
---|
9 | is uniform, is a combination of the nuclear and magnetic SLDs |
---|
10 | and depends on the spin states of the neutrons as follows: |
---|
11 | <br> |
---|
12 | <br> |
---|
13 | For magnetic scattering, only the magnetization component, <b>M</b><sub>perp</sub>, |
---|
14 | perpendicular to the scattering vector <b>Q</b> contributes to the the magnetic |
---|
15 | scattering length. (Figure below). |
---|
16 | <p> |
---|
17 | <img src="img/mag_vector.bmp"/> |
---|
18 | </p> |
---|
19 | <br> |
---|
20 | The magnetic scattering length density is then |
---|
21 | <p> |
---|
22 | <img src="img/dm_eq.gif"/> |
---|
23 | </p> |
---|
24 | <br> |
---|
25 | where γ = -1.913 the gyromagnetic ratio, μ<sub>B</sub> is the Bohr magneton, |
---|
26 | r<sub>0</sub> is the classical radius of electron, |
---|
27 | and <b>σ</b> is the Pauli spin. |
---|
28 | <br> |
---|
29 | For polarized neutron, the magnetic scattering is depending on the spin states. |
---|
30 | Let's consider that the incident neutrons are polarized parallel (+)/anti-parallel |
---|
31 | (–) to the x' axis (See both Figures above). |
---|
32 | The possible out-coming states then are + and - states for both incident states. |
---|
33 | <br> |
---|
34 | - Non-spin-flips: (+ +) and (- -) |
---|
35 | <br> |
---|
36 | - Spin-flips: (+ -) and (- +) |
---|
37 | <br> |
---|
38 | <p> |
---|
39 | <img src="img/M_angles_pic.bmp"/> |
---|
40 | </p> |
---|
41 | <br> |
---|
42 | <br> |
---|
43 | Now, let's assume that the angles of the <b>Q</b> vector and the spin-axis (x') against x-axis |
---|
44 | are φ and θ<sub>up</sub>, respectively (See Figure above). |
---|
45 | Then, depending upon the polarization (spin) state of neutrons, the scattering length |
---|
46 | densities , including the nuclear scattering length density (β <sub>N</sub>) are given as, for non-spin-flips, |
---|
47 | <p> |
---|
48 | <img src="img/sld1.gif"/> |
---|
49 | </p> |
---|
50 | <br> |
---|
51 | <br> |
---|
52 | for spin-flips, |
---|
53 | <p> |
---|
54 | <img src="img/sld2.gif"/> |
---|
55 | </p> |
---|
56 | <br> |
---|
57 | <br> |
---|
58 | where |
---|
59 | <p> |
---|
60 | <img src="img/mxp.gif"/> |
---|
61 | </p> |
---|
62 | <p> |
---|
63 | <img src="img/myp.gif"/> |
---|
64 | </p> |
---|
65 | <p> |
---|
66 | <img src="img/mzp.gif"/> |
---|
67 | </p> |
---|
68 | <p> |
---|
69 | <img src="img/mqx.gif"/> |
---|
70 | </p> |
---|
71 | <p> |
---|
72 | <img src="img/mqy.gif"/> |
---|
73 | </p> |
---|
74 | <br> |
---|
75 | <br> |
---|
76 | Here, the M<sub>0x</sub>, M<sub>0y</sub> and M<sub>0z</sub> are the x, y and z |
---|
77 | components of the magnetization vector given in the xyz lab frame. |
---|
78 | The angles of the magnetization, θ<sub>M</sub> and φ<sub>M</sub> as defined in the |
---|
79 | Figure (above), |
---|
80 | <p> |
---|
81 | <img src="img/m0x_eq.gif"/> |
---|
82 | </p> |
---|
83 | <p> |
---|
84 | <img src="img/m0y_eq.gif"/> |
---|
85 | </p> |
---|
86 | <p> |
---|
87 | <img src="img/m0z_eq.gif"/> |
---|
88 | </p> |
---|
89 | <br> |
---|
90 | <p> |
---|
91 | The user input parameters are M0_sld = D<sub>M</sub>M<sub>0</sub>, Up_theta = θ<sub>up</sub>, |
---|
92 | M_theta = θ<sub>M</sub>, and M_phi = φ<sub>M</sub>. |
---|
93 | The 'Up_frac_i' and 'Up_frac_f' are the ratio, (spin up) /(spin up + spin down) neutrons |
---|
94 | before the sample and at the analyzer, respectively. |
---|
95 | </p> |
---|
96 | <br> |
---|
97 | *Note: The values of the 'Up_frac_i' and 'Up_frac_f' must be in the range between 0 and 1. |
---|
98 | </body> |
---|
99 | |
---|
100 | |
---|
101 | |
---|
102 | |
---|