1 | """ |
---|
2 | This module intends to compute the neutron scattering length density |
---|
3 | of a molecule.It uses methods of the periodictable package to provide |
---|
4 | easy user interface for Sld calculator applications. |
---|
5 | """ |
---|
6 | |
---|
7 | import periodictable |
---|
8 | from periodictable import formula |
---|
9 | from periodictable.xsf import xray_energy, xray_sld_from_atoms |
---|
10 | from periodictable.constants import avogadro_number |
---|
11 | import periodictable.nsf |
---|
12 | neutron_sld_from_atoms = periodictable.nsf.neutron_sld_from_atoms |
---|
13 | |
---|
14 | class SldCalculator(object): |
---|
15 | """ |
---|
16 | Given a molecule, a density and a wavelength, this class |
---|
17 | determine scattering length density. |
---|
18 | |
---|
19 | Example: To get the sld value and the length 1/e the following |
---|
20 | methods need to be called in this later order:: |
---|
21 | formula = "H2O" |
---|
22 | density = 1.0 |
---|
23 | wavelength = 6.0 |
---|
24 | sld_calculator = SldCalculator() |
---|
25 | sld_calculator.set_value(formula, density, wavelength) |
---|
26 | sld_real, sld_im, _ = sld_calculator.calculate_neutron_sld() |
---|
27 | result : sld = sld_real +i sld_im |
---|
28 | |
---|
29 | Note: **set_value()** and **calculate_neutron_sld()** methods must |
---|
30 | be called in this order prior calling **calculate_length()** to get |
---|
31 | the proper result. |
---|
32 | """ |
---|
33 | def __init__(self): |
---|
34 | #Private variable |
---|
35 | self._volume = 0.0 |
---|
36 | #Inputs |
---|
37 | self.wavelength = 6.0 |
---|
38 | self.sld_formula = None |
---|
39 | self.density = None |
---|
40 | #Outputs |
---|
41 | self.sld_real = None |
---|
42 | self.sld_im = None |
---|
43 | self.coherence = 0.0 |
---|
44 | self.absorption = 0.0 |
---|
45 | self.incoherence = 0.0 |
---|
46 | self.length = 0.0 |
---|
47 | |
---|
48 | def set_value(self, formula, density, wavelength=6.0): |
---|
49 | """ |
---|
50 | Store values into the sld calculator and compute the corresponding |
---|
51 | volume. |
---|
52 | """ |
---|
53 | self.wavelength = wavelength |
---|
54 | self.density = float(density) |
---|
55 | self.sld_formula = formula(str(formula), density=self.density) |
---|
56 | |
---|
57 | if self.density == 0: |
---|
58 | raise ZeroDivisionError("integer division or modulo\ |
---|
59 | by zero for density") |
---|
60 | self._volume = (self.sld_formula.mass / self.density) / avogadro_number\ |
---|
61 | *1.0e24 |
---|
62 | |
---|
63 | |
---|
64 | def calculate_xray_sld(self, element): |
---|
65 | """ |
---|
66 | Get an element and compute the corresponding SLD for a given formula |
---|
67 | @param element: elementis a string of existing atom |
---|
68 | """ |
---|
69 | myformula = formula(str(element)) |
---|
70 | if len(myformula.atoms) != 1: |
---|
71 | return |
---|
72 | element = myformula.atoms.keys()[0] |
---|
73 | energy = xray_energy(element.K_alpha) |
---|
74 | atom = self.sld_formula.atoms |
---|
75 | atom_reel, atom_im = xray_sld_from_atoms(atom, |
---|
76 | density= self.density, |
---|
77 | energy= energy) |
---|
78 | return atom_reel, atom_im |
---|
79 | |
---|
80 | |
---|
81 | def calculate_neutron_sld(self): |
---|
82 | """ |
---|
83 | Compute the neutron SLD for a given molecule |
---|
84 | @return sld_real : real part of the sld value |
---|
85 | @return sld_im: imaginary part of the sld value |
---|
86 | @return inc: incoherence cross section |
---|
87 | """ |
---|
88 | if self.density == 0: |
---|
89 | raise ZeroDivisionError("integer division or modulo\ |
---|
90 | by zero for density") |
---|
91 | return |
---|
92 | atom = self.sld_formula.atoms |
---|
93 | sld_real, sld_im, inc = neutron_sld_from_atoms(atom, self.density, |
---|
94 | self.wavelength) |
---|
95 | self.incoherence = inc |
---|
96 | self.sld_real = sld_real |
---|
97 | self.sld_im = sld_im |
---|
98 | return self.sld_real, self.sld_im, self.incoherence |
---|
99 | |
---|
100 | def calculate_length(self): |
---|
101 | """ |
---|
102 | Compute the neutron 1/e length |
---|
103 | """ |
---|
104 | self.length = (self.coherence + self.absorption +\ |
---|
105 | self.incoherence) / self._volume |
---|
106 | return self.length |
---|
107 | |
---|