[3be3a80] | 1 | """ |
---|
| 2 | This object is a small tool to allow user to quickly |
---|
| 3 | determine the variance in q from the |
---|
| 4 | instrumental parameters. |
---|
| 5 | """ |
---|
| 6 | from instrument import Sample |
---|
| 7 | from instrument import Detector |
---|
| 8 | from instrument import Neutron |
---|
| 9 | from instrument import Aperture |
---|
| 10 | # import math stuffs |
---|
| 11 | from math import pi |
---|
| 12 | from math import sqrt |
---|
| 13 | from math import cos |
---|
| 14 | from math import sin |
---|
| 15 | from math import atan |
---|
| 16 | from math import atan2 |
---|
| 17 | from math import pow |
---|
| 18 | from math import asin |
---|
| 19 | from math import tan |
---|
| 20 | |
---|
| 21 | import numpy |
---|
| 22 | |
---|
| 23 | #Plank's constant in cgs unit |
---|
| 24 | _PLANK_H = 6.62606896E-27 |
---|
| 25 | #Gravitational acc. in cgs unit |
---|
| 26 | _GRAVITY = 981.0 |
---|
| 27 | |
---|
| 28 | class ResolutionCalculator(object): |
---|
| 29 | """ |
---|
| 30 | compute resolution in 2D |
---|
| 31 | """ |
---|
| 32 | def __init__(self): |
---|
| 33 | |
---|
| 34 | # wavelength |
---|
| 35 | self.wave = Neutron() |
---|
| 36 | # sample |
---|
| 37 | self.sample = Sample() |
---|
| 38 | # aperture |
---|
| 39 | self.aperture = Aperture() |
---|
| 40 | # detector |
---|
| 41 | self.detector = Detector() |
---|
| 42 | # 2d image of the resolution |
---|
| 43 | self.image = [] |
---|
| 44 | # resolutions |
---|
| 45 | self.sigma_1 = 0 |
---|
| 46 | self.sigma_2 = 0 |
---|
| 47 | self.sigma_1d = 0 |
---|
| 48 | # q min and max |
---|
| 49 | self.qx_min = -0.3 |
---|
| 50 | self.qx_max = 0.3 |
---|
| 51 | self.qy_min = -0.3 |
---|
| 52 | self.qy_max = 0.3 |
---|
| 53 | # q min and max of the detector |
---|
| 54 | self.detector_qx_min = -0.3 |
---|
| 55 | self.detector_qx_max = 0.3 |
---|
| 56 | self.detector_qy_min = -0.3 |
---|
| 57 | self.detector_qy_max = 0.3 |
---|
| 58 | # plots |
---|
| 59 | self.plot = None |
---|
| 60 | # instrumental params defaults |
---|
| 61 | self.mass = 0 |
---|
| 62 | self.intensity = 0 |
---|
| 63 | self.wavelength = 0 |
---|
| 64 | self.wavelength_spread = 0 |
---|
| 65 | self.source_aperture_size = [] |
---|
| 66 | self.source2sample_distance = [] |
---|
| 67 | self.sample2sample_distance = [] |
---|
| 68 | self.sample_aperture_size = [] |
---|
| 69 | self.sample2detector_distance = [] |
---|
| 70 | self.detector_pix_size = [] |
---|
| 71 | self.detector_size = [] |
---|
| 72 | # get all the values of the instrumental parameters |
---|
| 73 | self.get_all_instrument_params() |
---|
| 74 | |
---|
| 75 | def compute_and_plot(self, qx_value, qy_value, qx_min, qx_max, |
---|
| 76 | qy_min, qy_max, coord = 'polar'): |
---|
| 77 | """ |
---|
| 78 | Compute the resolution |
---|
| 79 | : qx_value: x component of q |
---|
| 80 | : qy_value: y component of q |
---|
| 81 | """ |
---|
| 82 | # compute 2d resolution |
---|
| 83 | _, _, sigma_1, sigma_2 = self.compute(qx_value, qy_value, coord) |
---|
| 84 | # make image |
---|
| 85 | image = self.get_image(qx_value, qy_value, sigma_1, sigma_2, |
---|
| 86 | qx_min, qx_max, qy_min, qy_max, coord) |
---|
| 87 | # plot image |
---|
| 88 | return self.plot_image(image) |
---|
| 89 | |
---|
| 90 | def compute(self, qx_value, qy_value, coord = 'polar'): |
---|
| 91 | """ |
---|
| 92 | Compute the Q resoltuion in || and + direction of 2D |
---|
| 93 | : qx_value: x component of q |
---|
| 94 | : qy_value: y component of q |
---|
| 95 | """ |
---|
| 96 | # make sure to update all the variables need. |
---|
| 97 | self.get_all_instrument_params() |
---|
| 98 | # wavelength |
---|
| 99 | lamb = self.wavelength |
---|
| 100 | |
---|
| 101 | if lamb == 0: |
---|
| 102 | msg = "Can't compute the resolution: the wavelength is zero..." |
---|
| 103 | raise RuntimeError, msg |
---|
| 104 | # wavelength spread |
---|
| 105 | lamb_spread = self.wavelength_spread |
---|
| 106 | # Find polar values |
---|
| 107 | qr_value, phi = self._get_polar_value(qx_value, qy_value) |
---|
| 108 | # vacuum wave transfer |
---|
| 109 | knot = 2*pi/lamb |
---|
| 110 | # scattering angle theta; always true for plane detector |
---|
| 111 | # aligned vertically to the ko direction |
---|
| 112 | if qr_value > knot: |
---|
| 113 | theta = pi/2 |
---|
| 114 | else: |
---|
| 115 | theta = asin(qr_value/knot) |
---|
| 116 | # source aperture size |
---|
| 117 | rone = self.source_aperture_size |
---|
| 118 | # sample aperture size |
---|
| 119 | rtwo = self.sample_aperture_size |
---|
| 120 | # detector pixel size |
---|
| 121 | rthree = self.detector_pix_size |
---|
| 122 | # source to sample(aperture) distance |
---|
| 123 | l_ssa = self.source2sample_distance[0] |
---|
| 124 | # sample(aperture) to detector distance |
---|
| 125 | l_sad = self.sample2detector_distance[0] |
---|
| 126 | # sample (aperture) to sample distance |
---|
| 127 | l_sas = self.sample2sample_distance[0] |
---|
| 128 | # source to sample distance |
---|
| 129 | l_one = l_ssa + l_sas |
---|
| 130 | # sample to detector distance |
---|
| 131 | l_two = l_sad - l_sas |
---|
| 132 | |
---|
| 133 | # Sample offset correction for l_one and Lp on variance calculation |
---|
| 134 | l1_cor = (l_ssa * l_two) / (l_sas + l_two) |
---|
| 135 | lp_cor = (l_ssa * l_two) / (l_one + l_two) |
---|
| 136 | # the radial distance to the pixel from the center of the detector |
---|
| 137 | radius = tan(theta)*l_two |
---|
| 138 | #Lp = l_one*l_two/(l_one+l_two) |
---|
| 139 | # default polar coordinate |
---|
| 140 | comp1 = 'radial' |
---|
| 141 | comp2 = 'phi' |
---|
| 142 | # in the case of the cartesian coordinate |
---|
| 143 | if coord == 'cartesian': |
---|
| 144 | comp1 = 'x' |
---|
| 145 | comp2 = 'y' |
---|
| 146 | |
---|
| 147 | # sigma in the radial/x direction |
---|
| 148 | # for source aperture |
---|
| 149 | sigma_1 = self.get_variance(rone, l1_cor, phi, comp1) |
---|
| 150 | # for sample apperture |
---|
| 151 | sigma_1 += self.get_variance(rtwo, lp_cor, phi, comp1) |
---|
| 152 | # for detector pix |
---|
| 153 | sigma_1 += self.get_variance(rthree, l_two, phi, comp1) |
---|
| 154 | # for gravity term |
---|
| 155 | sigma_1 += self.get_variance_gravity(l_ssa, l_sad, lamb, lamb_spread, |
---|
| 156 | phi, comp1, 'on') |
---|
| 157 | # for wavelength spread |
---|
| 158 | # reserve for 1d calculation |
---|
| 159 | sigma_wave_1 = self.get_variance_wave(radius, l_two, lamb_spread, |
---|
| 160 | phi, comp1, 'on') |
---|
| 161 | # for 1d |
---|
| 162 | variance_1d_1 = sigma_1/2 +sigma_wave_1 |
---|
| 163 | # normalize |
---|
| 164 | variance_1d_1 = knot*knot*variance_1d_1/12 |
---|
| 165 | |
---|
| 166 | # for 2d |
---|
| 167 | sigma_1 += sigma_wave_1 |
---|
| 168 | # normalize |
---|
| 169 | sigma_1 = knot*sqrt(sigma_1/12) |
---|
| 170 | |
---|
| 171 | # sigma in the phi/y direction |
---|
| 172 | # for source apperture |
---|
| 173 | sigma_2 = self.get_variance(rone, l1_cor, phi, comp2) |
---|
| 174 | # for sample apperture |
---|
| 175 | sigma_2 += self.get_variance(rtwo, lp_cor, phi, comp2) |
---|
| 176 | # for detector pix |
---|
| 177 | sigma_2 += self.get_variance(rthree, l_two, phi, comp2) |
---|
| 178 | # for gravity term |
---|
| 179 | sigma_2 += self.get_variance_gravity(l_ssa, l_sad, lamb, lamb_spread, |
---|
| 180 | phi, comp2, 'on') |
---|
| 181 | # for wavelength spread |
---|
| 182 | # reserve for 1d calculation |
---|
| 183 | sigma_wave_2 = self.get_variance_wave(radius, l_two, lamb_spread, |
---|
| 184 | phi, comp2, 'on') |
---|
| 185 | # for 1d |
---|
| 186 | variance_1d_2 = sigma_2/2 +sigma_wave_2 |
---|
| 187 | # normalize |
---|
| 188 | variance_1d_2 = knot*knot*variance_1d_2/12 |
---|
| 189 | |
---|
| 190 | # for 2d |
---|
| 191 | sigma_2 += sigma_wave_2 |
---|
| 192 | # normalize |
---|
| 193 | sigma_2 = knot*sqrt(sigma_2/12) |
---|
| 194 | |
---|
| 195 | # set sigmas |
---|
| 196 | self.sigma_1 = sigma_1 |
---|
| 197 | self.sigma_2 = sigma_2 |
---|
| 198 | |
---|
| 199 | self.sigma_1d = sqrt(variance_1d_1 + variance_1d_2) |
---|
| 200 | return qr_value, phi, sigma_1, sigma_2 |
---|
| 201 | |
---|
| 202 | def get_image(self, qx_value, qy_value, sigma_1, sigma_2, |
---|
| 203 | qx_min, qx_max, qy_min, qy_max, coord = 'polar'): |
---|
| 204 | """ |
---|
| 205 | Get the resolution in polar coordinate ready to plot |
---|
| 206 | : qx_value: qx_value value |
---|
| 207 | : qy_value: qy_value value |
---|
| 208 | : sigma_1: variance in r direction |
---|
| 209 | : sigma_2: variance in phi direction |
---|
| 210 | : coord: coordinate system of image, 'polar' or 'cartesian' |
---|
| 211 | """ |
---|
| 212 | # Get qx_max and qy_max... |
---|
| 213 | output = self._get_detector_qxqy_pixels() |
---|
| 214 | # Set qx_value/qy_value min/max |
---|
| 215 | #qx_min = self.qx_min |
---|
| 216 | #qx_max = self.qx_max |
---|
| 217 | #qy_min = self.qy_min |
---|
| 218 | #qy_max = self.qy_max |
---|
| 219 | |
---|
| 220 | # Find polar values |
---|
| 221 | qr_value, phi = self._get_polar_value(qx_value, qy_value) |
---|
| 222 | |
---|
| 223 | # Check whether the q value is within the detector range |
---|
| 224 | msg = "Invalid input: Q value out of the detector range..." |
---|
| 225 | if qx_min < self.qx_min: |
---|
| 226 | self.qx_min = qx_min |
---|
| 227 | #raise ValueError, msg |
---|
| 228 | if qx_max > self.qx_max: |
---|
| 229 | self.qx_max = qx_max |
---|
| 230 | #raise ValueError, msg |
---|
| 231 | if qy_min < self.qy_min: |
---|
| 232 | self.qy_min = qy_min |
---|
| 233 | #raise ValueError, msg |
---|
| 234 | if qy_max > self.qy_max: |
---|
| 235 | self.qy_max = qy_max |
---|
| 236 | #raise ValueError, msg |
---|
| 237 | |
---|
| 238 | # Make an empty graph in the detector scale |
---|
| 239 | dx_size = (self.qx_max - self.qx_min) / (1000 - 1) |
---|
| 240 | dy_size = (self.qy_max - self.qy_min) / (1000 - 1) |
---|
| 241 | x_val = numpy.arange(self.qx_min, self.qx_max, dx_size) |
---|
| 242 | y_val = numpy.arange(self.qy_max, self.qy_min, -dy_size) |
---|
| 243 | q_1, q_2 = numpy.meshgrid(x_val, y_val) |
---|
| 244 | |
---|
| 245 | # check whether polar or cartesian |
---|
| 246 | if coord == 'polar': |
---|
| 247 | q_1, q_2 = self._rotate_z(q_1, q_2, phi) |
---|
| 248 | qc_1 = qr_value |
---|
| 249 | qc_2 = 0.0 |
---|
| 250 | else: |
---|
| 251 | # catesian coordinate |
---|
| 252 | # qx_center |
---|
| 253 | qc_1 = qx_value |
---|
| 254 | # qy_center |
---|
| 255 | qc_2 = qy_value |
---|
| 256 | |
---|
| 257 | # Calculate the 2D Gaussian distribution image |
---|
| 258 | image = self._gaussian2d(q_1, q_2, qc_1, qc_2, sigma_1, sigma_2) |
---|
| 259 | # Add it if there are more than one inputs. |
---|
| 260 | if len(self.image) > 0: |
---|
| 261 | self.image += image |
---|
| 262 | else: |
---|
| 263 | self.image = image |
---|
| 264 | |
---|
| 265 | return self.image |
---|
| 266 | |
---|
| 267 | def plot_image(self, image): |
---|
| 268 | """ |
---|
| 269 | Plot image using pyplot |
---|
| 270 | : image: 2d resolution image |
---|
| 271 | |
---|
| 272 | : return plt: pylab object |
---|
| 273 | """ |
---|
| 274 | import matplotlib.pyplot as plt |
---|
| 275 | |
---|
| 276 | self.plot = plt |
---|
| 277 | plt.xlabel('$\\rm{Q}_{x} [A^{-1}]$') |
---|
| 278 | plt.ylabel('$\\rm{Q}_{y} [A^{-1}]$') |
---|
| 279 | # Max value of the image |
---|
| 280 | max = numpy.max(image) |
---|
| 281 | # Image |
---|
| 282 | im = plt.imshow(image, |
---|
| 283 | extent = [self.qx_min, self.qx_max, self.qy_min, self.qy_max]) |
---|
| 284 | |
---|
| 285 | # bilinear interpolation to make it smoother |
---|
| 286 | im.set_interpolation('bilinear') |
---|
| 287 | |
---|
| 288 | return plt |
---|
| 289 | |
---|
| 290 | def reset_image(self): |
---|
| 291 | """ |
---|
| 292 | Reset image to default (=[]) |
---|
| 293 | """ |
---|
| 294 | self.image = [] |
---|
| 295 | |
---|
| 296 | def get_variance(self, size = [], distance = 0, phi = 0, comp = 'radial'): |
---|
| 297 | """ |
---|
| 298 | Get the variance when the slit/pinhole size is given |
---|
| 299 | : size: list that can be one(diameter for circular) |
---|
| 300 | or two components(lengths for rectangular) |
---|
| 301 | : distance: [z, x] where z along the incident beam, x // qx_value |
---|
| 302 | : comp: direction of the sigma; can be 'phi', 'y', 'x', and 'radial' |
---|
| 303 | |
---|
| 304 | : return variance: sigma^2 |
---|
| 305 | """ |
---|
| 306 | # check the length of size (list) |
---|
| 307 | len_size = len(size) |
---|
| 308 | |
---|
| 309 | # define sigma component direction |
---|
| 310 | if comp == 'radial': |
---|
| 311 | phi_x = cos(phi) |
---|
| 312 | phi_y = sin(phi) |
---|
| 313 | elif comp == 'phi': |
---|
| 314 | phi_x = sin(phi) |
---|
| 315 | phi_y = cos(phi) |
---|
| 316 | elif comp == 'x': |
---|
| 317 | phi_x = 1 |
---|
| 318 | phi_y = 0 |
---|
| 319 | elif comp == 'y': |
---|
| 320 | phi_x = 0 |
---|
| 321 | phi_y = 1 |
---|
| 322 | else: |
---|
| 323 | phi_x = 0 |
---|
| 324 | phi_y = 0 |
---|
| 325 | # calculate each component |
---|
| 326 | # for pinhole w/ radius = size[0]/2 |
---|
| 327 | if len_size == 1: |
---|
| 328 | x_comp = (0.5 * size[0]) * sqrt(3) |
---|
| 329 | y_comp = 0 |
---|
| 330 | # for rectangular slit |
---|
| 331 | elif len_size == 2: |
---|
| 332 | x_comp = size[0] * phi_x |
---|
| 333 | y_comp = size[1] * phi_y |
---|
| 334 | # otherwise |
---|
| 335 | else: |
---|
| 336 | raise ValueError, " Improper input..." |
---|
| 337 | # get them squared |
---|
| 338 | sigma = x_comp * x_comp |
---|
| 339 | sigma += y_comp * y_comp |
---|
| 340 | # normalize by distance |
---|
| 341 | sigma /= (distance * distance) |
---|
| 342 | |
---|
| 343 | return sigma |
---|
| 344 | |
---|
| 345 | def get_variance_wave(self, radius, distance, spread, phi, |
---|
| 346 | comp = 'radial', switch = 'on'): |
---|
| 347 | """ |
---|
| 348 | Get the variance when the wavelength spread is given |
---|
| 349 | |
---|
| 350 | : radius: the radial distance from the beam center to the pix of q |
---|
| 351 | : distance: sample to detector distance |
---|
| 352 | : spread: wavelength spread (ratio) |
---|
| 353 | : comp: direction of the sigma; can be 'phi', 'y', 'x', and 'radial' |
---|
| 354 | |
---|
| 355 | : return variance: sigma^2 |
---|
| 356 | """ |
---|
| 357 | if switch.lower() == 'off': |
---|
| 358 | return 0 |
---|
| 359 | # check the singular point |
---|
| 360 | if distance == 0 or comp == 'phi': |
---|
| 361 | return 0 |
---|
| 362 | else: |
---|
| 363 | # calculate sigma^2 |
---|
| 364 | sigma = 2 * pow(radius/distance*spread, 2) |
---|
| 365 | if comp == 'x': |
---|
| 366 | sigma *= (cos(phi)*cos(phi)) |
---|
| 367 | elif comp == 'y': |
---|
| 368 | sigma *= (sin(phi)*sin(phi)) |
---|
| 369 | else: |
---|
| 370 | sigma *= 1 |
---|
| 371 | |
---|
| 372 | return sigma |
---|
| 373 | |
---|
| 374 | def get_variance_gravity(self, s_distance, d_distance, wavelength, spread, |
---|
| 375 | phi, comp = 'radial', switch = 'on'): |
---|
| 376 | """ |
---|
| 377 | Get the variance from gravity when the wavelength spread is given |
---|
| 378 | |
---|
| 379 | : s_distance: source to sample distance |
---|
| 380 | : d_distance: sample to detector distance |
---|
| 381 | : wavelength: wavelength |
---|
| 382 | : spread: wavelength spread (ratio) |
---|
| 383 | : comp: direction of the sigma; can be 'phi', 'y', 'x', and 'radial' |
---|
| 384 | |
---|
| 385 | : return variance: sigma^2 |
---|
| 386 | """ |
---|
| 387 | if switch.lower() == 'off': |
---|
| 388 | return 0 |
---|
[19637b1] | 389 | if self.mass == 0.0: |
---|
| 390 | return 0 |
---|
[3be3a80] | 391 | # check the singular point |
---|
| 392 | if d_distance == 0 or comp == 'x': |
---|
| 393 | return 0 |
---|
| 394 | else: |
---|
| 395 | # neutron mass in cgs unit |
---|
| 396 | self.mass = self.get_neutron_mass() |
---|
| 397 | # plank constant in cgs unit |
---|
| 398 | h_constant = _PLANK_H |
---|
| 399 | # gravity in cgs unit |
---|
| 400 | gravy = _GRAVITY |
---|
| 401 | # m/h |
---|
| 402 | m_over_h = self.mass /h_constant |
---|
| 403 | # A value |
---|
| 404 | a_value = d_distance * (s_distance + d_distance) |
---|
| 405 | a_value *= pow(m_over_h / 2, 2) |
---|
| 406 | a_value *= gravy |
---|
| 407 | # unit correction (1/cm to 1/A) for A and d_distance below |
---|
| 408 | a_value *= 1.0E-16 |
---|
| 409 | |
---|
| 410 | # calculate sigma^2 |
---|
| 411 | sigma = pow(a_value / d_distance, 2) |
---|
| 412 | sigma *= pow(wavelength, 4) |
---|
| 413 | sigma *= pow(spread, 2) |
---|
| 414 | sigma *= 8 |
---|
| 415 | |
---|
| 416 | # only for the polar coordinate |
---|
| 417 | if comp == 'radial': |
---|
| 418 | sigma *= (sin(phi) * sin(phi)) |
---|
| 419 | elif comp == 'phi': |
---|
| 420 | sigma *= (cos(phi) * cos(phi)) |
---|
| 421 | |
---|
| 422 | return sigma |
---|
| 423 | |
---|
| 424 | def get_intensity(self): |
---|
| 425 | """ |
---|
| 426 | Get intensity |
---|
| 427 | """ |
---|
| 428 | return self.wave.intensity |
---|
| 429 | |
---|
| 430 | def get_wavelength(self): |
---|
| 431 | """ |
---|
| 432 | Get wavelength |
---|
| 433 | """ |
---|
| 434 | return self.wave.wavelength |
---|
| 435 | |
---|
| 436 | def get_wavelength_spread(self): |
---|
| 437 | """ |
---|
| 438 | Get wavelength spread |
---|
| 439 | """ |
---|
| 440 | return self.wave.wavelength_spread |
---|
| 441 | |
---|
| 442 | def get_neutron_mass(self): |
---|
| 443 | """ |
---|
| 444 | Get Neutron mass |
---|
| 445 | """ |
---|
| 446 | return self.wave.mass |
---|
| 447 | |
---|
| 448 | def get_source_aperture_size(self): |
---|
| 449 | """ |
---|
| 450 | Get source aperture size |
---|
| 451 | """ |
---|
| 452 | return self.aperture.source_size |
---|
| 453 | |
---|
| 454 | def get_sample_aperture_size(self): |
---|
| 455 | """ |
---|
| 456 | Get sample aperture size |
---|
| 457 | """ |
---|
| 458 | return self.aperture.sample_size |
---|
| 459 | |
---|
| 460 | def get_detector_pix_size(self): |
---|
| 461 | """ |
---|
| 462 | Get detector pixel size |
---|
| 463 | """ |
---|
| 464 | return self.detector.pix_size |
---|
| 465 | |
---|
| 466 | def get_detector_size(self): |
---|
| 467 | """ |
---|
| 468 | Get detector size |
---|
| 469 | """ |
---|
| 470 | return self.detector.size |
---|
| 471 | |
---|
| 472 | def get_source2sample_distance(self): |
---|
| 473 | """ |
---|
| 474 | Get detector source2sample_distance |
---|
| 475 | """ |
---|
| 476 | return self.aperture.sample_distance |
---|
| 477 | |
---|
| 478 | def get_sample2sample_distance(self): |
---|
| 479 | """ |
---|
| 480 | Get detector sampleslitsample_distance |
---|
| 481 | """ |
---|
| 482 | return self.sample.distance |
---|
| 483 | |
---|
| 484 | def get_sample2detector_distance(self): |
---|
| 485 | """ |
---|
| 486 | Get detector sample2detector_distance |
---|
| 487 | """ |
---|
| 488 | return self.detector.distance |
---|
| 489 | |
---|
| 490 | def set_intensity(self, intensity): |
---|
| 491 | """ |
---|
| 492 | Set intensity |
---|
| 493 | """ |
---|
| 494 | self.wave.set_intensity(intensity) |
---|
| 495 | |
---|
| 496 | def set_wavelength(self, wavelength): |
---|
| 497 | """ |
---|
| 498 | Set wavelength |
---|
| 499 | """ |
---|
| 500 | self.wave.set_wavelength(wavelength) |
---|
| 501 | |
---|
| 502 | def set_wavelength_spread(self, wavelength_spread): |
---|
| 503 | """ |
---|
| 504 | Set wavelength spread |
---|
| 505 | """ |
---|
| 506 | self.wave.set_wavelength_spread(wavelength_spread) |
---|
| 507 | |
---|
| 508 | def set_source_aperture_size(self, size): |
---|
| 509 | """ |
---|
| 510 | Set source aperture size |
---|
| 511 | |
---|
| 512 | : param size: [dia_value] or [x_value, y_value] |
---|
| 513 | """ |
---|
| 514 | if len(size) < 1 or len(size) > 2: |
---|
| 515 | raise RuntimeError, "The length of the size must be one or two." |
---|
| 516 | self.aperture.set_source_size(size) |
---|
| 517 | |
---|
| 518 | def set_neutron_mass(self, mass): |
---|
| 519 | """ |
---|
| 520 | Set Neutron mass |
---|
| 521 | """ |
---|
| 522 | self.wave.set_mass(mass) |
---|
| 523 | |
---|
| 524 | def set_sample_aperture_size(self, size): |
---|
| 525 | """ |
---|
| 526 | Set sample aperture size |
---|
| 527 | |
---|
| 528 | : param size: [dia_value] or [xheight_value, yheight_value] |
---|
| 529 | """ |
---|
| 530 | if len(size) < 1 or len(size) > 2: |
---|
| 531 | raise RuntimeError, "The length of the size must be one or two." |
---|
| 532 | self.aperture.set_sample_size(size) |
---|
| 533 | |
---|
| 534 | def set_detector_pix_size(self, size): |
---|
| 535 | """ |
---|
| 536 | Set detector pixel size |
---|
| 537 | """ |
---|
| 538 | self.detector.set_pix_size(size) |
---|
| 539 | |
---|
| 540 | def set_detector_size(self, size): |
---|
| 541 | """ |
---|
| 542 | Set detector size in number of pixels |
---|
| 543 | : param size: [pixel_nums] or [x_pix_num, yx_pix_num] |
---|
| 544 | """ |
---|
| 545 | self.detector.set_size(size) |
---|
| 546 | |
---|
| 547 | def set_source2sample_distance(self, distance): |
---|
| 548 | """ |
---|
| 549 | Set detector source2sample_distance |
---|
| 550 | |
---|
| 551 | : param distance: [distance, x_offset] |
---|
| 552 | """ |
---|
| 553 | if len(distance) < 1 or len(distance) > 2: |
---|
| 554 | raise RuntimeError, "The length of the size must be one or two." |
---|
| 555 | self.aperture.set_sample_distance(distance) |
---|
| 556 | |
---|
| 557 | def set_sample2sample_distance(self, distance): |
---|
| 558 | """ |
---|
| 559 | Set detector sample_slit2sample_distance |
---|
| 560 | |
---|
| 561 | : param distance: [distance, x_offset] |
---|
| 562 | """ |
---|
| 563 | if len(distance) < 1 or len(distance) > 2: |
---|
| 564 | raise RuntimeError, "The length of the size must be one or two." |
---|
| 565 | self.sample.set_distance(distance) |
---|
| 566 | |
---|
| 567 | def set_sample2detector_distance(self, distance): |
---|
| 568 | """ |
---|
| 569 | Set detector sample2detector_distance |
---|
| 570 | |
---|
| 571 | : param distance: [distance, x_offset] |
---|
| 572 | """ |
---|
| 573 | if len(distance) < 1 or len(distance) > 2: |
---|
| 574 | raise RuntimeError, "The length of the size must be one or two." |
---|
| 575 | self.detector.set_distance(distance) |
---|
| 576 | |
---|
| 577 | def get_all_instrument_params(self): |
---|
| 578 | """ |
---|
| 579 | Get all instrumental parameters |
---|
| 580 | """ |
---|
| 581 | self.intensity = self.get_intensity() |
---|
| 582 | self.wavelength = self.get_wavelength() |
---|
| 583 | self.wavelength_spread = self.get_wavelength_spread() |
---|
| 584 | self.mass = self.get_neutron_mass() |
---|
| 585 | self.source_aperture_size = self.get_source_aperture_size() |
---|
| 586 | self.sample_aperture_size = self.get_sample_aperture_size() |
---|
| 587 | self.detector_pix_size = self.get_detector_pix_size() |
---|
| 588 | self.detector_size = self.get_detector_size() |
---|
| 589 | self.source2sample_distance = self.get_source2sample_distance() |
---|
| 590 | self.sample2sample_distance = self.get_sample2sample_distance() |
---|
| 591 | self.sample2detector_distance = self.get_sample2detector_distance() |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | |
---|
| 595 | def _rotate_z(self, x_value, y_value, theta= 0.0): |
---|
| 596 | """ |
---|
| 597 | Rotate x-y cordinate around z-axis by theta |
---|
| 598 | : x_value: numpy array of x values |
---|
| 599 | : y_value: numpy array of y values |
---|
| 600 | : theta: angle to rotate by in rad |
---|
| 601 | |
---|
| 602 | :return: x_prime, y-prime |
---|
| 603 | """ |
---|
| 604 | # rotate by theta |
---|
| 605 | x_prime = x_value * cos(theta) + y_value * sin(theta) |
---|
| 606 | y_prime = -x_value * sin(theta) + y_value * cos(theta) |
---|
| 607 | |
---|
| 608 | return x_prime, y_prime |
---|
| 609 | |
---|
| 610 | def _gaussian2d(self, x_val, y_val, x0_val, y0_val, sigma_x, sigma_y): |
---|
| 611 | """ |
---|
| 612 | Calculate 2D Gaussian distribution |
---|
| 613 | : x_val: x value |
---|
| 614 | : y_val: y value |
---|
| 615 | : x0_val: mean value in x-axis |
---|
| 616 | : y0_val: mean value in y-axis |
---|
| 617 | : sigma_x: variance in x-direction |
---|
| 618 | : sigma_y: variance in y-direction |
---|
| 619 | |
---|
| 620 | : return: gaussian (value) |
---|
| 621 | """ |
---|
| 622 | # call gaussian1d |
---|
| 623 | gaussian = self._gaussian1d(x_val, x0_val, sigma_x) |
---|
| 624 | gaussian *= self._gaussian1d(y_val, y0_val, sigma_y) |
---|
| 625 | |
---|
| 626 | # normalizing factor correction |
---|
| 627 | if sigma_x != 0 and sigma_y != 0: |
---|
| 628 | gaussian *= sqrt(2 * pi) |
---|
| 629 | return gaussian |
---|
| 630 | |
---|
| 631 | def _gaussian1d(self, value, mean, sigma): |
---|
| 632 | """ |
---|
| 633 | Calculate 1D Gaussian distribution |
---|
| 634 | : value: value |
---|
| 635 | : mean: mean value |
---|
| 636 | : sigma: variance |
---|
| 637 | |
---|
| 638 | : return: gaussian (value) |
---|
| 639 | """ |
---|
| 640 | # default |
---|
| 641 | gaussian = 1.0 |
---|
| 642 | if sigma != 0: |
---|
| 643 | # get exponent |
---|
| 644 | nu_value = (value - mean) / sigma |
---|
| 645 | nu_value *= nu_value |
---|
| 646 | nu_value *= -0.5 |
---|
| 647 | gaussian *= numpy.exp(nu_value) |
---|
| 648 | gaussian /= sigma |
---|
| 649 | # normalize |
---|
| 650 | gaussian /= sqrt(2 * pi) |
---|
| 651 | |
---|
| 652 | return gaussian |
---|
| 653 | |
---|
| 654 | def _atan_phi(self, qy_value, qx_value): |
---|
| 655 | """ |
---|
| 656 | Find the angle phi of q on the detector plane for qx_value, qy_value given |
---|
| 657 | : qx_value: x component of q |
---|
| 658 | : qy_value: y component of q |
---|
| 659 | |
---|
| 660 | : return phi: the azimuthal angle of q on x-y plane |
---|
| 661 | """ |
---|
| 662 | # default |
---|
| 663 | phi = 0 |
---|
| 664 | # ToDo: This is misterious - sign??? |
---|
| 665 | #qy_value = -qy_value |
---|
| 666 | # Take care of the singular point |
---|
| 667 | if qx_value == 0: |
---|
| 668 | if qy_value > 0: |
---|
| 669 | phi = pi / 2 |
---|
| 670 | elif qy_value < 0: |
---|
| 671 | phi = -pi / 2 |
---|
| 672 | else: |
---|
| 673 | phi = 0 |
---|
| 674 | else: |
---|
| 675 | # the angle |
---|
| 676 | phi = atan2(qy_value, qx_value) |
---|
| 677 | |
---|
| 678 | return phi |
---|
| 679 | |
---|
| 680 | def _get_detector_qxqy_pixels(self): |
---|
| 681 | """ |
---|
| 682 | Get the pixel positions of the detector in the qx_value-qy_value space |
---|
| 683 | """ |
---|
| 684 | |
---|
| 685 | # update all param values |
---|
| 686 | self.get_all_instrument_params() |
---|
| 687 | |
---|
| 688 | # wavelength |
---|
| 689 | wavelength = self.wavelength |
---|
| 690 | # Gavity correction |
---|
| 691 | delta_y = self._get_beamcenter_drop() # in cm |
---|
| 692 | |
---|
| 693 | # detector_pix size |
---|
| 694 | detector_pix_size = self.detector_pix_size |
---|
| 695 | # Square or circular pixel |
---|
| 696 | if len(detector_pix_size) == 1: |
---|
| 697 | pix_x_size = detector_pix_size[0] |
---|
| 698 | pix_y_size = detector_pix_size[0] |
---|
| 699 | # rectangular pixel pixel |
---|
| 700 | elif len(detector_pix_size) == 2: |
---|
| 701 | pix_x_size = detector_pix_size[0] |
---|
| 702 | pix_y_size = detector_pix_size[1] |
---|
| 703 | else: |
---|
| 704 | raise ValueError, " Input value format error..." |
---|
| 705 | # Sample to detector distance = sample slit to detector |
---|
| 706 | # minus sample offset |
---|
| 707 | sample2detector_distance = self.sample2detector_distance[0] - \ |
---|
| 708 | self.sample2sample_distance[0] |
---|
| 709 | # detector offset in x-direction |
---|
| 710 | detector_offset = 0 |
---|
| 711 | try: |
---|
| 712 | detector_offset = self.sample2detector_distance[1] |
---|
| 713 | except: |
---|
| 714 | pass |
---|
| 715 | |
---|
| 716 | # detector size in [no of pix_x,no of pix_y] |
---|
| 717 | detector_pix_nums_x = self.detector_size[0] |
---|
| 718 | |
---|
| 719 | # get pix_y if it exists, otherwse take it from [0] |
---|
| 720 | try: |
---|
| 721 | detector_pix_nums_y = self.detector_size[1] |
---|
| 722 | except: |
---|
| 723 | detector_pix_nums_y = self.detector_size[0] |
---|
| 724 | |
---|
| 725 | # detector offset in pix number |
---|
| 726 | offset_x = detector_offset / pix_x_size |
---|
| 727 | offset_y = delta_y / pix_y_size |
---|
| 728 | |
---|
| 729 | # beam center position in pix number (start from 0) |
---|
| 730 | center_x, center_y = self._get_beamcenter_position(detector_pix_nums_x, |
---|
| 731 | detector_pix_nums_y, offset_x, offset_y) |
---|
| 732 | # distance [cm] from the beam center on detector plane |
---|
| 733 | detector_ind_x = numpy.arange(detector_pix_nums_x) |
---|
| 734 | detector_ind_y = numpy.arange(detector_pix_nums_y) |
---|
| 735 | |
---|
| 736 | # shif 0.5 pixel so that pix position is at the center of the pixel |
---|
| 737 | detector_ind_x = detector_ind_x + 0.5 |
---|
| 738 | detector_ind_y = detector_ind_y + 0.5 |
---|
| 739 | |
---|
| 740 | # the relative postion from the beam center |
---|
| 741 | detector_ind_x = detector_ind_x - center_x |
---|
| 742 | detector_ind_y = detector_ind_y - center_y |
---|
| 743 | |
---|
| 744 | # unit correction in cm |
---|
| 745 | detector_ind_x = detector_ind_x * pix_x_size |
---|
| 746 | detector_ind_y = detector_ind_y * pix_y_size |
---|
| 747 | |
---|
| 748 | qx_value = numpy.zeros(len(detector_ind_x)) |
---|
| 749 | qy_value = numpy.zeros(len(detector_ind_y)) |
---|
| 750 | i = 0 |
---|
| 751 | |
---|
| 752 | for indx in detector_ind_x: |
---|
| 753 | qx_value[i] = self._get_qx(indx, sample2detector_distance, wavelength) |
---|
| 754 | i += 1 |
---|
| 755 | i = 0 |
---|
| 756 | for indy in detector_ind_y: |
---|
| 757 | qy_value[i] = self._get_qx(indy, sample2detector_distance, wavelength) |
---|
| 758 | i += 1 |
---|
| 759 | |
---|
| 760 | # qx_value and qy_value values in array |
---|
| 761 | qx_value = qx_value.repeat(detector_pix_nums_y) |
---|
| 762 | qx_value = qx_value.reshape(detector_pix_nums_x, detector_pix_nums_y) |
---|
| 763 | qy_value = qy_value.repeat(detector_pix_nums_x) |
---|
| 764 | qy_value = qy_value.reshape(detector_pix_nums_y, detector_pix_nums_x) |
---|
| 765 | qy_value = qy_value.transpose() |
---|
| 766 | |
---|
| 767 | # p min and max values among the center of pixels |
---|
| 768 | self.qx_min = numpy.min(qx_value) |
---|
| 769 | self.qx_max = numpy.max(qx_value) |
---|
| 770 | self.qy_min = numpy.min(qy_value) |
---|
| 771 | self.qy_max = numpy.max(qy_value) |
---|
| 772 | |
---|
| 773 | # Appr. min and max values of the detector display limits |
---|
| 774 | # i.e., edges of the last pixels. |
---|
| 775 | self.qy_min += self._get_qx(-0.5 * pix_y_size, |
---|
| 776 | sample2detector_distance, wavelength) |
---|
| 777 | self.qy_max += self._get_qx(0.5 * pix_y_size, |
---|
| 778 | sample2detector_distance, wavelength) |
---|
| 779 | #if self.qx_min == self.qx_max: |
---|
| 780 | self.qx_min += self._get_qx(-0.5 * pix_x_size, |
---|
| 781 | sample2detector_distance, wavelength) |
---|
| 782 | self.qx_max += self._get_qx(0.5 * pix_x_size, |
---|
| 783 | sample2detector_distance, wavelength) |
---|
| 784 | # min and max values of detecter |
---|
| 785 | self.detector_qx_min = self.qx_min |
---|
| 786 | self.detector_qx_max = self.qx_max |
---|
| 787 | self.detector_qy_min = self.qy_min |
---|
| 788 | self.detector_qy_max = self.qy_max |
---|
| 789 | |
---|
| 790 | # try to set it as a Data2D otherwise pass (not required for now) |
---|
| 791 | try: |
---|
| 792 | from DataLoader.data_info import Data2D |
---|
| 793 | output = Data2D() |
---|
| 794 | inten = numpy.zeros_like(qx_value) |
---|
| 795 | output.data = inten |
---|
| 796 | output.qx_data = qx_value |
---|
| 797 | output.qy_data = qy_value |
---|
| 798 | except: |
---|
| 799 | pass |
---|
| 800 | |
---|
| 801 | return output#qx_value,qy_value |
---|
| 802 | |
---|
| 803 | def _get_qx(self, dx_size, det_dist, wavelength): |
---|
| 804 | """ |
---|
| 805 | :param dx_size: x-distance from beam center [cm] |
---|
| 806 | :param det_dist: sample to detector distance [cm] |
---|
| 807 | |
---|
| 808 | :return: q-value at the given position |
---|
| 809 | """ |
---|
| 810 | # Distance from beam center in the plane of detector |
---|
| 811 | plane_dist = dx_size |
---|
| 812 | # full scattering angle on the x-axis |
---|
| 813 | theta = atan(plane_dist / det_dist) |
---|
| 814 | qx_value = (2.0 * pi / wavelength) * sin(theta) |
---|
| 815 | return qx_value |
---|
| 816 | |
---|
| 817 | def _get_polar_value(self, qx_value, qy_value): |
---|
| 818 | """ |
---|
| 819 | Find qr_value and phi from qx_value and qy_value values |
---|
| 820 | |
---|
| 821 | : return qr_value, phi |
---|
| 822 | """ |
---|
| 823 | # find |q| on detector plane |
---|
| 824 | qr_value = sqrt(qx_value*qx_value + qy_value*qy_value) |
---|
| 825 | # find angle phi |
---|
| 826 | phi = self._atan_phi(qy_value, qx_value) |
---|
| 827 | |
---|
| 828 | return qr_value, phi |
---|
| 829 | |
---|
| 830 | def _get_beamcenter_position(self, num_x, num_y, offset_x, offset_y): |
---|
| 831 | """ |
---|
| 832 | :param num_x: number of pixel in x-direction |
---|
| 833 | :param num_y: number of pixel in y-direction |
---|
| 834 | :param offset: detector offset in x-direction in pix number |
---|
| 835 | |
---|
| 836 | :return: pix number; pos_x, pos_y in pix index |
---|
| 837 | """ |
---|
| 838 | # beam center position |
---|
| 839 | pos_x = num_x / 2 |
---|
| 840 | pos_y = num_y / 2 |
---|
| 841 | |
---|
| 842 | # correction for offset |
---|
| 843 | pos_x += offset_x |
---|
| 844 | # correction for gravity that is always negative |
---|
| 845 | pos_y -= offset_y |
---|
| 846 | |
---|
| 847 | return pos_x, pos_y |
---|
| 848 | |
---|
| 849 | def _get_beamcenter_drop(self): |
---|
| 850 | """ |
---|
| 851 | Get the beam center drop (delta y) in y diection due to gravity |
---|
| 852 | |
---|
| 853 | :return delta y: the beam center drop in cm |
---|
| 854 | """ |
---|
[19637b1] | 855 | # Check if mass == 0 (X-ray). |
---|
| 856 | if self.mass == 0: |
---|
| 857 | return 0 |
---|
[3be3a80] | 858 | # Covert unit from A to cm |
---|
| 859 | unit_cm = 1e-08 |
---|
| 860 | # Velocity of neutron in horizontal direction (~ actual velocity) |
---|
| 861 | velocity = _PLANK_H / (self.mass * self.wavelength * unit_cm) |
---|
| 862 | # Compute delta y |
---|
| 863 | delta_y = 0.5 |
---|
| 864 | delta_y *= _GRAVITY |
---|
| 865 | delta_y *= self.sample2detector_distance[0] |
---|
| 866 | delta_y *= (self.source2sample_distance[0] + self.sample2detector_distance[0]) |
---|
| 867 | delta_y /= (velocity * velocity) |
---|
| 868 | |
---|
| 869 | return delta_y |
---|
| 870 | |
---|
| 871 | |
---|