1 | """ |
---|
2 | This module implement a class that generates values given some inputs. The User apply a function to a sequence |
---|
3 | of inputs and outputs are generated. |
---|
4 | """ |
---|
5 | import numpy |
---|
6 | |
---|
7 | |
---|
8 | class DataTable(object): |
---|
9 | """ |
---|
10 | This class is store inputs as a dictionary of key (string) and values list of python objects. |
---|
11 | It generates outputs given some function and its current inputs. |
---|
12 | if an output object has an attribute "extract" function returning attributes names and values |
---|
13 | relevant to this output then DataTable will map them accordingly. |
---|
14 | """ |
---|
15 | def __init__(self, inputs): |
---|
16 | """ |
---|
17 | """ |
---|
18 | #array of inputs |
---|
19 | self.__inputs_data = None |
---|
20 | #array of outputs |
---|
21 | self.__outputs_data = None |
---|
22 | #contains combinations of inputs and outputs |
---|
23 | self__data = None |
---|
24 | #the selected map function |
---|
25 | self.__function = map |
---|
26 | #the number of row in the array |
---|
27 | self.length = 0 |
---|
28 | |
---|
29 | def set_inputs(self, inputs): |
---|
30 | """ |
---|
31 | Checks that inputs is a dictionary. |
---|
32 | Checks that all values are list of same length. |
---|
33 | Creates an array of dimension n x m and stores into self.__inputs_data |
---|
34 | :param inputs: a dictionary of string as keys and values (list) of same length |
---|
35 | :example: inputs= {"data":[1, 2], "temperature":[30, 40]} |
---|
36 | result = self.set_value(inputs) |
---|
37 | assert result == [ ["data" "temperature"] |
---|
38 | [1 30 ] |
---|
39 | [2 40 ]] |
---|
40 | """ |
---|
41 | |
---|
42 | def get_inputs(self): |
---|
43 | """ |
---|
44 | return array of inputs |
---|
45 | """ |
---|
46 | def get_outputs(self): |
---|
47 | """ |
---|
48 | return array of output value |
---|
49 | """ |
---|
50 | def get_value(self): |
---|
51 | """ |
---|
52 | Return current saved inputs and outputs |
---|
53 | """ |
---|
54 | return self.__data |
---|
55 | |
---|
56 | def _mapply(self, arguments): |
---|
57 | """ |
---|
58 | Receive a list of arguments where the fist item in the list is a function pointer |
---|
59 | and the rest of items are argument to the function |
---|
60 | :param arguments: arguments[0] is a function pointer |
---|
61 | arguments[1:] is possible parameters of that function |
---|
62 | """ |
---|
63 | return apply(arguments[0], arguments[1:]) |
---|
64 | |
---|
65 | def _compute(self, instance, func_name, *args): |
---|
66 | """ |
---|
67 | Receive an instance of a class , a function name and some possible arguments for the function |
---|
68 | Generate result from that function |
---|
69 | """ |
---|
70 | return getattr(instance, func)(*args) |
---|
71 | |
---|
72 | def compute(self,instances, func_names): |
---|
73 | """ |
---|
74 | compute a series of values , the set the value of self.__outputs_data and self.__data |
---|
75 | :param instances: list of instance of object |
---|
76 | :param func_names: name of the function to use for mapping |
---|
77 | |
---|
78 | """ |
---|
79 | |
---|
80 | def _extract_output(self, output): |
---|
81 | """ |
---|
82 | receive an output which is a python object request extract_output function |
---|
83 | in order to extract additional information about the output. If the output does |
---|
84 | not have extract_output has attribute, the output is return as it is else |
---|
85 | a dictionary of output attribute names is return as well as their corresponding |
---|
86 | values |
---|
87 | :example: class OutPut: |
---|
88 | a = 2 |
---|
89 | b = 3 |
---|
90 | out = OutPut() |
---|
91 | result = self.extract_output(out) |
---|
92 | assert result == {"a":2, "b":3} |
---|
93 | """ |
---|
94 | |
---|
95 | def select_map_function(self, mapper="default"): |
---|
96 | """ |
---|
97 | given a key word defined [mapper] a map function is used to map object |
---|
98 | available map functions are: built-in python map , processing map etc... |
---|
99 | """ |
---|
100 | |
---|
101 | class DataProcessor(object): |
---|
102 | """ |
---|
103 | Implement a singleton of DataTable |
---|
104 | """ |
---|
105 | __data_table = DataTable() |
---|
106 | |
---|
107 | def set_inputs(self, inputs): |
---|
108 | self.__data_table.set_inputs(inputs) |
---|
109 | |
---|
110 | def select_map_function(self, mapper="default"): |
---|
111 | self.__data_table.select_map_function(mapper) |
---|
112 | |
---|
113 | def compute(self,instance, func_name): |
---|
114 | return self.__data_table.compute(instance, func_name) |
---|
115 | |
---|
116 | def get_inputs(self): |
---|
117 | """ |
---|
118 | return array of inputs |
---|
119 | """ |
---|
120 | return self.__data_table.get_inputs() |
---|
121 | |
---|
122 | def get_outputs(self): |
---|
123 | """ |
---|
124 | return array of output value |
---|
125 | """ |
---|
126 | return self.__data_table.get_outputs() |
---|
127 | |
---|
128 | def get_value(self): |
---|
129 | """ |
---|
130 | Return current saved inputs and outputs |
---|
131 | """ |
---|
132 | return self.__data_table.get_value() |
---|
133 | |
---|
134 | |
---|
135 | |
---|
136 | |
---|
137 | if __name__ == "__main__": |
---|
138 | a = numpy.array([['c','d']]) |
---|
139 | c = numpy.array([2,3]) |
---|
140 | d = numpy.array([4,5]) |
---|
141 | m = numpy.column_stack([c, d]) |
---|
142 | print numpy.concatenate((a, m)) |
---|
143 | # the way set_value will work |
---|
144 | my_dict = {"c":[2,3], "d":[4, 5]} |
---|
145 | if my_dict: |
---|
146 | length = len(my_dict.values()[0]) |
---|
147 | index = [] |
---|
148 | for item in my_dict.values(): |
---|
149 | assert len(item) == length |
---|
150 | data = numpy.concatenate((numpy.array([my_dict.keys()]), numpy.column_stack( my_dict.values()))) |
---|
151 | print "Data" |
---|
152 | print data |
---|
153 | print data[1:] |
---|
154 | print zip(data[1:1].T) |
---|
155 | |
---|
156 | |
---|
157 | |
---|
158 | |
---|
159 | |
---|
160 | |
---|