1 | """ |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | See the license text in license.txt |
---|
7 | |
---|
8 | copyright 2010, University of Tennessee |
---|
9 | """ |
---|
10 | import unittest |
---|
11 | import numpy, math |
---|
12 | from DataLoader.loader import Loader |
---|
13 | from DataLoader.data_info import Data1D |
---|
14 | from sans.invariant import invariant |
---|
15 | from DataLoader.qsmearing import smear_selection |
---|
16 | |
---|
17 | class TestLinearFit(unittest.TestCase): |
---|
18 | """ |
---|
19 | Test Line fit |
---|
20 | """ |
---|
21 | def setUp(self): |
---|
22 | x = numpy.asarray([1.,2.,3.,4.,5.,6.,7.,8.,9.]) |
---|
23 | y = numpy.asarray([1.,2.,3.,4.,5.,6.,7.,8.,9.]) |
---|
24 | dy = y/10.0 |
---|
25 | |
---|
26 | self.data = Data1D(x=x,y=y,dy=dy) |
---|
27 | |
---|
28 | def test_fit_linear_data(self): |
---|
29 | """ |
---|
30 | Simple linear fit |
---|
31 | """ |
---|
32 | |
---|
33 | # Create invariant object. Background and scale left as defaults. |
---|
34 | fit = invariant.Extrapolator(data=self.data) |
---|
35 | a,b = fit.fit() |
---|
36 | |
---|
37 | # Test results |
---|
38 | self.assertAlmostEquals(a, 1.0, 5) |
---|
39 | self.assertAlmostEquals(b, 0.0, 5) |
---|
40 | |
---|
41 | def test_fit_linear_data_with_noise(self): |
---|
42 | """ |
---|
43 | Simple linear fit with noise |
---|
44 | """ |
---|
45 | import random, math |
---|
46 | |
---|
47 | for i in range(len(self.data.y)): |
---|
48 | self.data.y[i] = self.data.y[i]+.1*random.random() |
---|
49 | |
---|
50 | # Create invariant object. Background and scale left as defaults. |
---|
51 | fit = invariant.Extrapolator(data=self.data) |
---|
52 | a,b = fit.fit() |
---|
53 | |
---|
54 | # Test results |
---|
55 | self.assertTrue(math.fabs(a-1.0)<0.05) |
---|
56 | self.assertTrue(math.fabs(b)<0.1) |
---|
57 | |
---|
58 | |
---|
59 | class TestInvariantCalculator(unittest.TestCase): |
---|
60 | """ |
---|
61 | Test Line fit |
---|
62 | """ |
---|
63 | def setUp(self): |
---|
64 | self.data = Loader().load("latex_smeared.xml")[0] |
---|
65 | |
---|
66 | def test_initial_data_processing(self): |
---|
67 | """ |
---|
68 | Test whether the background and scale are handled properly |
---|
69 | when creating an InvariantCalculator object |
---|
70 | """ |
---|
71 | length = len(self.data.x) |
---|
72 | self.assertEqual(length, len(self.data.y)) |
---|
73 | inv = invariant.InvariantCalculator(self.data) |
---|
74 | |
---|
75 | self.assertEqual(length, len(inv._data.x)) |
---|
76 | self.assertEqual(inv._data.x[0], self.data.x[0]) |
---|
77 | |
---|
78 | # Now the same thing with a background value |
---|
79 | bck = 0.1 |
---|
80 | inv = invariant.InvariantCalculator(self.data, background=bck) |
---|
81 | self.assertEqual(inv._background, bck) |
---|
82 | |
---|
83 | self.assertEqual(length, len(inv._data.x)) |
---|
84 | self.assertEqual(inv._data.y[0]+bck, self.data.y[0]) |
---|
85 | |
---|
86 | # Now the same thing with a scale value |
---|
87 | scale = 0.1 |
---|
88 | inv = invariant.InvariantCalculator(self.data, scale=scale) |
---|
89 | self.assertEqual(inv._scale, scale) |
---|
90 | |
---|
91 | self.assertEqual(length, len(inv._data.x)) |
---|
92 | self.assertAlmostEqual(inv._data.y[0]/scale, self.data.y[0],7) |
---|
93 | |
---|
94 | |
---|
95 | def test_incompatible_data_class(self): |
---|
96 | """ |
---|
97 | Check that only classes that inherit from Data1D are allowed as data. |
---|
98 | """ |
---|
99 | class Incompatible(): |
---|
100 | pass |
---|
101 | self.assertRaises(ValueError, invariant.InvariantCalculator, Incompatible()) |
---|
102 | |
---|
103 | |
---|
104 | class TestGuinierExtrapolation(unittest.TestCase): |
---|
105 | """ |
---|
106 | Generate a Guinier distribution and verify that the extrapolation |
---|
107 | produce the correct ditribution. |
---|
108 | """ |
---|
109 | |
---|
110 | def setUp(self): |
---|
111 | """ |
---|
112 | Generate a Guinier distribution. After extrapolating, we will |
---|
113 | verify that we obtain the scale and rg parameters |
---|
114 | """ |
---|
115 | self.scale = 1.5 |
---|
116 | self.rg = 30.0 |
---|
117 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
118 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
119 | dy = y*.1 |
---|
120 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
121 | |
---|
122 | def test_low_q(self): |
---|
123 | """ |
---|
124 | Invariant with low-Q extrapolation |
---|
125 | """ |
---|
126 | # Create invariant object. Background and scale left as defaults. |
---|
127 | inv = invariant.InvariantCalculator(data=self.data) |
---|
128 | # Set the extrapolation parameters for the low-Q range |
---|
129 | inv.set_extrapolation(range='low', npts=20, function='guinier') |
---|
130 | |
---|
131 | self.assertEqual(inv._low_extrapolation_npts, 20) |
---|
132 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
133 | |
---|
134 | # Data boundaries for fiiting |
---|
135 | qmin = inv._data.x[0] |
---|
136 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
137 | |
---|
138 | # Extrapolate the low-Q data |
---|
139 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
140 | qmin=qmin, |
---|
141 | qmax=qmax, |
---|
142 | power=inv._low_extrapolation_power) |
---|
143 | self.assertAlmostEqual(self.scale, a, 6) |
---|
144 | self.assertAlmostEqual(self.rg, b, 6) |
---|
145 | |
---|
146 | |
---|
147 | class TestPowerLawExtrapolation(unittest.TestCase): |
---|
148 | """ |
---|
149 | Generate a power law distribution and verify that the extrapolation |
---|
150 | produce the correct ditribution. |
---|
151 | """ |
---|
152 | |
---|
153 | def setUp(self): |
---|
154 | """ |
---|
155 | Generate a power law distribution. After extrapolating, we will |
---|
156 | verify that we obtain the scale and m parameters |
---|
157 | """ |
---|
158 | self.scale = 1.5 |
---|
159 | self.m = 3.0 |
---|
160 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
161 | y = numpy.asarray([self.scale * math.pow(q ,-1.0*self.m) for q in x]) |
---|
162 | dy = y*.1 |
---|
163 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
164 | |
---|
165 | def test_low_q(self): |
---|
166 | """ |
---|
167 | Invariant with low-Q extrapolation |
---|
168 | """ |
---|
169 | # Create invariant object. Background and scale left as defaults. |
---|
170 | inv = invariant.InvariantCalculator(data=self.data) |
---|
171 | # Set the extrapolation parameters for the low-Q range |
---|
172 | inv.set_extrapolation(range='low', npts=20, function='power_law') |
---|
173 | |
---|
174 | self.assertEqual(inv._low_extrapolation_npts, 20) |
---|
175 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.PowerLaw) |
---|
176 | |
---|
177 | # Data boundaries for fitting |
---|
178 | qmin = inv._data.x[0] |
---|
179 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
180 | |
---|
181 | # Extrapolate the low-Q data |
---|
182 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
183 | qmin=qmin, |
---|
184 | qmax=qmax, |
---|
185 | power=inv._low_extrapolation_power) |
---|
186 | |
---|
187 | self.assertAlmostEqual(self.scale, a, 6) |
---|
188 | self.assertAlmostEqual(self.m, b, 6) |
---|
189 | |
---|
190 | class TestLinearization(unittest.TestCase): |
---|
191 | |
---|
192 | def test_guinier_incompatible_length(self): |
---|
193 | g = invariant.Guinier() |
---|
194 | data_in = Data1D(x=[1], y=[1,2], dy=None) |
---|
195 | self.assertRaises(AssertionError, g.linearize_data, data_in) |
---|
196 | data_in = Data1D(x=[1,1], y=[1,2], dy=[1]) |
---|
197 | self.assertRaises(AssertionError, g.linearize_data, data_in) |
---|
198 | |
---|
199 | def test_linearization(self): |
---|
200 | """ |
---|
201 | Check that the linearization process filters out points |
---|
202 | that can't be transformed |
---|
203 | """ |
---|
204 | x = numpy.asarray(numpy.asarray([0,1,2,3])) |
---|
205 | y = numpy.asarray(numpy.asarray([1,1,1,1])) |
---|
206 | g = invariant.Guinier() |
---|
207 | data_in = Data1D(x=x, y=y) |
---|
208 | data_out = g.linearize_data(data_in) |
---|
209 | x_out, y_out, dy_out = data_out.x, data_out.y, data_out.dy |
---|
210 | self.assertEqual(len(x_out), 3) |
---|
211 | self.assertEqual(len(y_out), 3) |
---|
212 | self.assertEqual(len(dy_out), 3) |
---|
213 | |
---|
214 | |
---|
215 | class TestDataExtraLow(unittest.TestCase): |
---|
216 | """ |
---|
217 | Generate a Guinier distribution and verify that the extrapolation |
---|
218 | produce the correct ditribution. Tested if the data generated by the |
---|
219 | invariant calculator is correct |
---|
220 | """ |
---|
221 | |
---|
222 | def setUp(self): |
---|
223 | """ |
---|
224 | Generate a Guinier distribution. After extrapolating, we will |
---|
225 | verify that we obtain the scale and rg parameters |
---|
226 | """ |
---|
227 | self.scale = 1.5 |
---|
228 | self.rg = 30.0 |
---|
229 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
230 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
231 | dy = y*.1 |
---|
232 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
233 | |
---|
234 | def test_low_q(self): |
---|
235 | """ |
---|
236 | Invariant with low-Q extrapolation with no slit smear |
---|
237 | """ |
---|
238 | # Create invariant object. Background and scale left as defaults. |
---|
239 | inv = invariant.InvariantCalculator(data=self.data) |
---|
240 | # Set the extrapolation parameters for the low-Q range |
---|
241 | inv.set_extrapolation(range='low', npts=20, function='guinier') |
---|
242 | |
---|
243 | self.assertEqual(inv._low_extrapolation_npts, 20) |
---|
244 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
245 | |
---|
246 | # Data boundaries for fiiting |
---|
247 | qmin = inv._data.x[0] |
---|
248 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
249 | |
---|
250 | # Extrapolate the low-Q data |
---|
251 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
252 | qmin=qmin, |
---|
253 | qmax=qmax, |
---|
254 | power=inv._low_extrapolation_power) |
---|
255 | self.assertAlmostEqual(self.scale, a, 6) |
---|
256 | self.assertAlmostEqual(self.rg, b, 6) |
---|
257 | |
---|
258 | qstar = inv.get_qstar(extrapolation='low') |
---|
259 | reel_y = self.data.y |
---|
260 | test_y = inv._low_extrapolation_function.evaluate_model(x=self.data.x) |
---|
261 | for i in range(len(self.data.x)): |
---|
262 | value = math.fabs(test_y[i]-reel_y[i])/reel_y[i] |
---|
263 | self.assert_(value < 0.001) |
---|
264 | |
---|
265 | class TestDataExtraLowSlit(unittest.TestCase): |
---|
266 | """ |
---|
267 | for a smear data, test that the fitting go through |
---|
268 | reel data for the 2 first points |
---|
269 | """ |
---|
270 | def setUp(self): |
---|
271 | """ |
---|
272 | Reel data containing slit smear information |
---|
273 | .Use 2 points of data to fit with power_law when exptrapolating |
---|
274 | """ |
---|
275 | list = Loader().load("latex_smeared.xml") |
---|
276 | self.data = list[0] |
---|
277 | self.data.dxl = list[0].dxl |
---|
278 | self.data.dxw = list[0].dxw |
---|
279 | self.npts = 2 |
---|
280 | |
---|
281 | def test_low_q(self): |
---|
282 | """ |
---|
283 | Invariant with low-Q extrapolation with slit smear |
---|
284 | """ |
---|
285 | # Create invariant object. Background and scale left as defaults. |
---|
286 | inv = invariant.InvariantCalculator(data=self.data) |
---|
287 | # Set the extrapolation parameters for the low-Q range |
---|
288 | inv.set_extrapolation(range='low', npts=self.npts, function='power_law') |
---|
289 | |
---|
290 | self.assertEqual(inv._low_extrapolation_npts, self.npts) |
---|
291 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.PowerLaw) |
---|
292 | |
---|
293 | # Data boundaries for fiiting |
---|
294 | qmin = inv._data.x[0] |
---|
295 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
296 | |
---|
297 | # Extrapolate the low-Q data |
---|
298 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
299 | qmin=qmin, |
---|
300 | qmax=qmax, |
---|
301 | power=inv._low_extrapolation_power) |
---|
302 | |
---|
303 | qstar = inv.get_qstar(extrapolation='low') |
---|
304 | reel_y = self.data.y |
---|
305 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
306 | #low data . expect the fit engine to have been already called and the guinier |
---|
307 | # to have the radius and the scale fitted |
---|
308 | test_y = inv._low_extrapolation_function.evaluate_model(x=self.data.x[:inv._low_extrapolation_npts]) |
---|
309 | #Check any points generated from the reel data and the extrapolation have |
---|
310 | #very close value |
---|
311 | self.assert_(len(test_y))== len(reel_y[:inv._low_extrapolation_npts]) |
---|
312 | for i in range(inv._low_extrapolation_npts): |
---|
313 | value = math.fabs(test_y[i]-reel_y[i])/reel_y[i] |
---|
314 | self.assert_(value < 0.001) |
---|
315 | data_out_range, data_in_range= inv.get_extra_data_low(npts_in=None) |
---|
316 | |
---|
317 | class TestDataExtraLowSlitGuinier(unittest.TestCase): |
---|
318 | """ |
---|
319 | for a smear data, test that the fitting go through |
---|
320 | reel data for atleast the 2 first points |
---|
321 | """ |
---|
322 | |
---|
323 | def setUp(self): |
---|
324 | """ |
---|
325 | Generate a Guinier distribution. After extrapolating, we will |
---|
326 | verify that we obtain the scale and rg parameters |
---|
327 | """ |
---|
328 | self.scale = 1.5 |
---|
329 | self.rg = 30.0 |
---|
330 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
331 | y = numpy.asarray([self.scale * math.exp( -(q*self.rg)**2 / 3.0 ) for q in x]) |
---|
332 | dy = y*.1 |
---|
333 | dxl = 0.117 * numpy.ones(len(x)) |
---|
334 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
335 | self.data.dxl = dxl |
---|
336 | self.npts = len(x)-10 |
---|
337 | |
---|
338 | def test_low_q(self): |
---|
339 | """ |
---|
340 | Invariant with low-Q extrapolation with slit smear |
---|
341 | """ |
---|
342 | # Create invariant object. Background and scale left as defaults. |
---|
343 | inv = invariant.InvariantCalculator(data=self.data) |
---|
344 | # Set the extrapolation parameters for the low-Q range |
---|
345 | inv.set_extrapolation(range='low', npts=self.npts, function='guinier') |
---|
346 | |
---|
347 | self.assertEqual(inv._low_extrapolation_npts, self.npts) |
---|
348 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
349 | |
---|
350 | # Data boundaries for fiiting |
---|
351 | qmin = inv._data.x[0] |
---|
352 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
353 | |
---|
354 | # Extrapolate the low-Q data |
---|
355 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
356 | qmin=qmin, |
---|
357 | qmax=qmax, |
---|
358 | power=inv._low_extrapolation_power) |
---|
359 | |
---|
360 | |
---|
361 | qstar = inv.get_qstar(extrapolation='low') |
---|
362 | reel_y = self.data.y |
---|
363 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
364 | #low data . expect the fit engine to have been already called and the guinier |
---|
365 | # to have the radius and the scale fitted |
---|
366 | test_y = inv._low_extrapolation_function.evaluate_model(x=self.data.x[:inv._low_extrapolation_npts]) |
---|
367 | self.assert_(len(test_y))== len(reel_y[:inv._low_extrapolation_npts]) |
---|
368 | |
---|
369 | for i in range(inv._low_extrapolation_npts): |
---|
370 | value = math.fabs(test_y[i]-reel_y[i])/reel_y[i] |
---|
371 | self.assert_(value < 0.001) |
---|
372 | |
---|
373 | def test_low_data(self): |
---|
374 | """ |
---|
375 | Invariant with low-Q extrapolation with slit smear |
---|
376 | """ |
---|
377 | # Create invariant object. Background and scale left as defaults. |
---|
378 | inv = invariant.InvariantCalculator(data=self.data) |
---|
379 | # Set the extrapolation parameters for the low-Q range |
---|
380 | inv.set_extrapolation(range='low', npts=self.npts, function='guinier') |
---|
381 | |
---|
382 | self.assertEqual(inv._low_extrapolation_npts, self.npts) |
---|
383 | self.assertEqual(inv._low_extrapolation_function.__class__, invariant.Guinier) |
---|
384 | |
---|
385 | # Data boundaries for fiiting |
---|
386 | qmin = inv._data.x[0] |
---|
387 | qmax = inv._data.x[inv._low_extrapolation_npts - 1] |
---|
388 | |
---|
389 | # Extrapolate the low-Q data |
---|
390 | a, b = inv._fit(model=inv._low_extrapolation_function, |
---|
391 | qmin=qmin, |
---|
392 | qmax=qmax, |
---|
393 | power=inv._low_extrapolation_power) |
---|
394 | |
---|
395 | |
---|
396 | qstar = inv.get_qstar(extrapolation='low') |
---|
397 | reel_y = self.data.y |
---|
398 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
399 | #low data . expect the fit engine to have been already called and the guinier |
---|
400 | # to have the radius and the scale fitted |
---|
401 | data_out_range, data_in_range= inv.get_extra_data_low() |
---|
402 | test_y = data_in_range.y |
---|
403 | self.assert_(len(test_y))== len(reel_y[:inv._low_extrapolation_npts]) |
---|
404 | for i in range(inv._low_extrapolation_npts): |
---|
405 | value = math.fabs(test_y[i]-reel_y[i])/reel_y[i] |
---|
406 | self.assert_(value < 0.001) |
---|
407 | |
---|
408 | data_out_range, data_in_range= inv.get_extra_data_low(npts_in= 2, nsteps=10, |
---|
409 | q_start= 1e-4) |
---|
410 | test_y = data_in_range.y |
---|
411 | self.assert_(len(test_y))== len(reel_y[:2]) |
---|
412 | for i in range(2): |
---|
413 | value = math.fabs(test_y[i]-reel_y[i])/reel_y[i] |
---|
414 | self.assert_(value < 0.001) |
---|
415 | #test the data out of range |
---|
416 | test_out_y = data_out_range.y |
---|
417 | self.assertEqual(len(test_out_y), 10) |
---|
418 | |
---|
419 | class TestDataExtraHighSlitPowerLaw(unittest.TestCase): |
---|
420 | """ |
---|
421 | for a smear data, test that the fitting go through |
---|
422 | reel data for atleast the 2 first points |
---|
423 | """ |
---|
424 | |
---|
425 | def setUp(self): |
---|
426 | """ |
---|
427 | Generate a Guinier distribution. After extrapolating, we will |
---|
428 | verify that we obtain the scale and rg parameters |
---|
429 | """ |
---|
430 | self.scale = 1.5 |
---|
431 | self.m = 3.0 |
---|
432 | x = numpy.arange(0.0001, 0.1, 0.0001) |
---|
433 | y = numpy.asarray([self.scale * math.pow(q ,-1.0*self.m) for q in x]) |
---|
434 | dy = y*.1 |
---|
435 | self.data = Data1D(x=x, y=y, dy=dy) |
---|
436 | dxl = 0.117 * numpy.ones(len(x)) |
---|
437 | self.data.dxl = dxl |
---|
438 | self.npts = 20 |
---|
439 | |
---|
440 | def test_high_q(self): |
---|
441 | """ |
---|
442 | Invariant with high-Q extrapolation with slit smear |
---|
443 | """ |
---|
444 | # Create invariant object. Background and scale left as defaults. |
---|
445 | inv = invariant.InvariantCalculator(data=self.data) |
---|
446 | # Set the extrapolation parameters for the low-Q range |
---|
447 | inv.set_extrapolation(range='high', npts=self.npts, function='power_law') |
---|
448 | |
---|
449 | self.assertEqual(inv._high_extrapolation_npts, self.npts) |
---|
450 | self.assertEqual(inv._high_extrapolation_function.__class__, invariant.PowerLaw) |
---|
451 | |
---|
452 | # Data boundaries for fiiting |
---|
453 | xlen = len(self.data.x) |
---|
454 | start = xlen - inv._high_extrapolation_npts |
---|
455 | qmin = inv._data.x[start] |
---|
456 | qmax = inv._data.x[xlen-1] |
---|
457 | |
---|
458 | # Extrapolate the high-Q data |
---|
459 | a, b = inv._fit(model=inv._high_extrapolation_function, |
---|
460 | qmin=qmin, |
---|
461 | qmax=qmax, |
---|
462 | power=inv._high_extrapolation_power) |
---|
463 | |
---|
464 | |
---|
465 | qstar = inv.get_qstar(extrapolation='high') |
---|
466 | reel_y = self.data.y |
---|
467 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
468 | #low data . expect the fit engine to have been already called and the power law |
---|
469 | # to have the radius and the scale fitted |
---|
470 | |
---|
471 | |
---|
472 | test_y = inv._high_extrapolation_function.evaluate_model(x=self.data.x[start: ]) |
---|
473 | self.assert_(len(test_y))== len(reel_y[start:]) |
---|
474 | |
---|
475 | for i in range(len(self.data.x[start:])): |
---|
476 | value = math.fabs(test_y[i]-reel_y[start+i])/reel_y[start+i] |
---|
477 | self.assert_(value < 0.001) |
---|
478 | |
---|
479 | def test_high_data(self): |
---|
480 | """ |
---|
481 | Invariant with low-Q extrapolation with slit smear |
---|
482 | """ |
---|
483 | # Create invariant object. Background and scale left as defaults. |
---|
484 | inv = invariant.InvariantCalculator(data=self.data) |
---|
485 | # Set the extrapolation parameters for the low-Q range |
---|
486 | inv.set_extrapolation(range='high', npts=self.npts, function='power_law') |
---|
487 | |
---|
488 | self.assertEqual(inv._high_extrapolation_npts, self.npts) |
---|
489 | self.assertEqual(inv._high_extrapolation_function.__class__, invariant.PowerLaw) |
---|
490 | |
---|
491 | # Data boundaries for fiiting |
---|
492 | xlen = len(self.data.x) |
---|
493 | start = xlen - inv._high_extrapolation_npts |
---|
494 | qmin = inv._data.x[start] |
---|
495 | qmax = inv._data.x[xlen-1] |
---|
496 | |
---|
497 | # Extrapolate the high-Q data |
---|
498 | a, b = inv._fit(model=inv._high_extrapolation_function, |
---|
499 | qmin=qmin, |
---|
500 | qmax=qmax, |
---|
501 | power=inv._high_extrapolation_power) |
---|
502 | |
---|
503 | |
---|
504 | qstar = inv.get_qstar(extrapolation='high') |
---|
505 | reel_y = self.data.y |
---|
506 | #Compution the y 's coming out of the invariant when computing extrapolated |
---|
507 | #low data . expect the fit engine to have been already called and the power law |
---|
508 | # to have the radius and the scale fitted |
---|
509 | |
---|
510 | data_out_range, data_in_range= inv.get_extra_data_high() |
---|
511 | test_y = data_in_range.y |
---|
512 | self.assert_(len(test_y))== len(reel_y[start:]) |
---|
513 | temp = reel_y[start:] |
---|
514 | |
---|
515 | for i in range(len(self.data.x[start:])): |
---|
516 | value = math.fabs(test_y[i]- temp[i])/temp[i] |
---|
517 | self.assert_(value < 0.001) |
---|
518 | |
---|
519 | data_out_range, data_in_range= inv.get_extra_data_high(npts_in=5, nsteps=10, |
---|
520 | q_end= 2) |
---|
521 | test_y = data_in_range.y |
---|
522 | self.assert_(len(test_y)==5) |
---|
523 | temp = reel_y[start:start+5] |
---|
524 | |
---|
525 | for i in range(len(self.data.x[start:start+5])): |
---|
526 | |
---|
527 | value = math.fabs(test_y[i]- temp[i])/temp[i] |
---|
528 | self.assert_(value < 0.06) |
---|
529 | #test the data out of range |
---|
530 | test_out_y = data_out_range.y |
---|
531 | self.assertEqual(len(test_out_y), 10) |
---|
532 | |
---|