source: sasview/Invariant/invariant.py @ b94945d

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since b94945d was a45622a, checked in by Gervaise Alina <gervyh@…>, 15 years ago

working on docs invariant

  • Property mode set to 100644
File size: 34.1 KB
RevLine 
[a45622a]1#####################################################################
2#This software was developed by the University of Tennessee as part of the
3#Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4#project funded by the US National Science Foundation.
5#See the license text in license.txt
6#copyright 2010, University of Tennessee
7######################################################################
[2e94cbde]8
9"""
[a45622a]10This module implements invariant and its related computations.
[2e94cbde]11
[a45622a]12:author: Gervaise B. Alina/UTK
13:author: Mathieu Doucet/UTK
14:author: Jae Cho/UTK
[c75a8ed]15
[75047cf]16"""
17import math 
[ef9ed58]18import numpy
[75047cf]19
[46d50ca]20from DataLoader.data_info import Data1D as LoaderData1D
[75047cf]21
[b6666d4]22# The minimum q-value to be used when extrapolating
23Q_MINIMUM  = 1e-5
24
25# The maximum q-value to be used when extrapolating
26Q_MAXIMUM  = 10
27
28# Number of steps in the extrapolation
29INTEGRATION_NSTEPS = 1000
30
[59a41066]31class Transform(object):
[ef9ed58]32    """
[a45622a]33    Define interface that need to compute a function or an inverse
34    function given some x, y
[59a41066]35    """
[76c1727]36   
37    def linearize_data(self, data):
[59a41066]38        """
[a45622a]39        Linearize data so that a linear fit can be performed.
40        Filter out the data that can't be transformed.
41       
42        :param data: LoadData1D instance
43       
[76c1727]44        """
45        # Check that the vector lengths are equal
46        assert(len(data.x)==len(data.y))
47        if data.dy is not None:
48            assert(len(data.x)==len(data.dy))
49            dy = data.dy
50        else:
[bdd162f]51            dy = numpy.ones(len(data.y))
[76c1727]52           
53        # Transform the data
[bdd162f]54        data_points = zip(data.x, data.y, dy)
55
[76c1727]56        output_points = [(self.linearize_q_value(p[0]),
57                          math.log(p[1]),
[bdd162f]58                          p[2]/p[1]) for p in data_points if p[0]>0 and p[1]>0 and p[2]>0]
[76c1727]59       
60        x_out, y_out, dy_out = zip(*output_points)
61       
[bdd162f]62        # Create Data1D object
[76c1727]63        x_out = numpy.asarray(x_out)
64        y_out = numpy.asarray(y_out)
65        dy_out = numpy.asarray(dy_out)
[bdd162f]66        linear_data = LoaderData1D(x=x_out, y=y_out, dy=dy_out)
[76c1727]67       
68        return linear_data
[bdd162f]69   
70    def get_allowed_bins(self, data):
[76c1727]71        """
[a45622a]72        Goes through the data points and returns a list of boolean values
73        to indicate whether each points is allowed by the model or not.
74       
75        :param data: Data1D object
[59a41066]76        """
[bdd162f]77        return [p[0]>0 and p[1]>0 and p[2]>0 for p in zip(data.x, data.y, data.dy)]
78       
[aafa962]79    def linearize_q_value(self, value):
[59a41066]80        """
[a45622a]81        Transform the input q-value for linearization
[59a41066]82        """
[82703a1]83        return NotImplemented
[aafa962]84
[bdd162f]85    def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0):
[59a41066]86        """
[a45622a]87        set private member
[59a41066]88        """
[82703a1]89        return NotImplemented
[aafa962]90     
91    def evaluate_model(self, x):
[59a41066]92        """
[a45622a]93        Returns an array f(x) values where f is the Transform function.
[59a41066]94        """
[82703a1]95        return NotImplemented
96   
[bdd162f]97    def evaluate_model_errors(self, x):
98        """
[a45622a]99        Returns an array of I(q) errors
[bdd162f]100        """
101        return NotImplemented
102   
[59a41066]103class Guinier(Transform):
104    """
[a45622a]105    class of type Transform that performs operations related to guinier
106    function
[59a41066]107    """
108    def __init__(self, scale=1, radius=60):
109        Transform.__init__(self)
110        self.scale = scale
111        self.radius = radius
[bdd162f]112        ## Uncertainty of scale parameter
113        self.dscale  = 0
114        ## Unvertainty of radius parameter
115        self.dradius = 0
[76c1727]116       
[aafa962]117    def linearize_q_value(self, value):
[82703a1]118        """
[a45622a]119        Transform the input q-value for linearization
120       
121        :param value: q-value
122       
123        :return: q*q
[82703a1]124        """
125        return value * value
[59a41066]126   
[bdd162f]127    def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0):
[a45622a]128        """
129            assign new value to the scale and the radius
[82703a1]130        """
[bdd162f]131        self.scale = math.exp(constant)
132        self.radius = math.sqrt(-3 * slope)
133       
134        # Errors
135        self.dscale = math.exp(constant)*dconstant
136        self.dradius = -3.0/2.0/math.sqrt(-3 * slope)*dslope
[59a41066]137       
[c4f52e3]138        return [self.radius, self.scale], [self.dradius, self.dscale]
139       
[aafa962]140    def evaluate_model(self, x):
[59a41066]141        """
[a45622a]142        return F(x)= scale* e-((radius*x)**2/3)
[59a41066]143        """
144        return self._guinier(x)
[aafa962]145             
[bdd162f]146    def evaluate_model_errors(self, x):
147        """
[a45622a]148        Returns the error on I(q) for the given array of q-values
149       
150        :param x: array of q-values
[bdd162f]151        """
152        p1 = numpy.array([self.dscale * math.exp(-((self.radius * q)**2/3)) for q in x])
153        p2 = numpy.array([self.scale * math.exp(-((self.radius * q)**2/3)) * (-(q**2/3)) * 2 * self.radius * self.dradius for q in x])
154        diq2 = p1*p1 + p2*p2       
155        return numpy.array( [math.sqrt(err) for err in diq2] )
156             
[59a41066]157    def _guinier(self, x):
158        """
[a45622a]159        Retrive the guinier function after apply an inverse guinier function
160        to x
161        Compute a F(x) = scale* e-((radius*x)**2/3).
162       
163        :param x: a vector of q values
164        :param scale: the scale value
165        :param radius: the guinier radius value
166       
167        :return: F(x)
[59a41066]168        """   
169        # transform the radius of coming from the inverse guinier function to a
170        # a radius of a guinier function
171        if self.radius <= 0:
172            raise ValueError("Rg expected positive value, but got %s"%self.radius) 
173        value = numpy.array([math.exp(-((self.radius * i)**2/3)) for i in x ]) 
174        return self.scale * value
175
176class PowerLaw(Transform):
177    """
[a45622a]178    class of type transform that perform operation related to power_law
179    function
[ef9ed58]180    """
[59a41066]181    def __init__(self, scale=1, power=4):
182        Transform.__init__(self)
183        self.scale = scale
184        self.power = power
[76c1727]185   
[aafa962]186    def linearize_q_value(self, value):
187        """
[a45622a]188        Transform the input q-value for linearization
189       
190        :param value: q-value
191       
192        :return: log(q)
[aafa962]193        """
194        return math.log(value)
195   
[bdd162f]196    def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0):
[82703a1]197        """
[a45622a]198        Assign new value to the scale and the power
[82703a1]199        """
[bdd162f]200        self.power = -slope
201        self.scale = math.exp(constant)
202       
203        # Errors
204        self.dscale = math.exp(constant)*dconstant
[c4f52e3]205        self.dpower = -dslope
206       
207        return [self.power, self.scale], [self.dpower, self.dscale]
[82703a1]208       
[aafa962]209    def evaluate_model(self, x):
[59a41066]210        """
[a45622a]211        given a scale and a radius transform x, y using a power_law
212        function
[59a41066]213        """
214        return self._power_law(x)
[bdd162f]215   
216    def evaluate_model_errors(self, x):
217        """
[a45622a]218        Returns the error on I(q) for the given array of q-values
219        :param x: array of q-values
[bdd162f]220        """
221        p1 = numpy.array([self.dscale * math.pow(q, -self.power) for q in x])
[c4f52e3]222        p2 = numpy.array([self.scale * self.power * math.pow(q, -self.power-1) * self.dpower for q in x])
[bdd162f]223        diq2 = p1*p1 + p2*p2       
224        return numpy.array( [math.sqrt(err) for err in diq2] )
[59a41066]225       
226    def _power_law(self, x):
227        """
[a45622a]228        F(x) = scale* (x)^(-power)
229            when power= 4. the model is porod
230            else power_law
231        The model has three parameters: ::
232            1. x: a vector of q values
233            2. power: power of the function
234            3. scale : scale factor value
235       
236        :param x: array
237        :return: F(x)
[59a41066]238        """
239        if self.power <= 0:
[82703a1]240            raise ValueError("Power_law function expected positive power, but got %s"%self.power)
[59a41066]241        if self.scale <= 0:
242            raise ValueError("scale expected positive value, but got %s"%self.scale) 
243       
244        value = numpy.array([ math.pow(i, -self.power) for i in x ]) 
245        return self.scale * value
[ef9ed58]246
[59a41066]247class Extrapolator:
[75047cf]248    """
[a45622a]249    Extrapolate I(q) distribution using a given model
[75047cf]250    """
[bdd162f]251    def __init__(self, data, model=None):
[75047cf]252        """
[a45622a]253        Determine a and b given a linear equation y = ax + b
254       
255        If a model is given, it will be used to linearize the data before
256        the extrapolation is performed. If None, a simple linear fit will be done.
257       
258        :param data: data containing x and y  such as  y = ax + b
259        :param model: optional Transform object
[75047cf]260        """
261        self.data  = data
[bdd162f]262        self.model = model
[59a41066]263       
[2a11d09]264        # Set qmin as the lowest non-zero value
265        self.qmin = Q_MINIMUM
266        for q_value in self.data.x:
[59a41066]267            if q_value > 0: 
[2a11d09]268                self.qmin = q_value
269                break
270        self.qmax = max(self.data.x)
[bdd162f]271             
272    def fit(self, power=None, qmin=None, qmax=None):
[75047cf]273        """
[a45622a]274        Fit data for y = ax + b  return a and b
275       
276        :param power: a fixed, otherwise None
277        :param qmin: Minimum Q-value
278        :param qmax: Maximum Q-value
[75047cf]279        """
[bdd162f]280        if qmin is None:
281            qmin = self.qmin
282        if qmax is None:
283            qmax = self.qmax
284           
285        # Identify the bin range for the fit
286        idx = (self.data.x >= qmin) & (self.data.x <= qmax)
287       
[437a9f0]288        fx = numpy.zeros(len(self.data.x))
[59a41066]289
[bdd162f]290        # Uncertainty
291        if type(self.data.dy)==numpy.ndarray and len(self.data.dy)==len(self.data.x):
[3082632]292            sigma = self.data.dy
[2a11d09]293        else:
294            sigma = numpy.ones(len(self.data.x))
[59a41066]295           
[9b6497bb]296        # Compute theory data f(x)
[bdd162f]297        fx[idx] = self.data.y[idx]
[472b11c]298       
[bdd162f]299        # Linearize the data
300        if self.model is not None:
301            linearized_data = self.model.linearize_data(LoaderData1D(self.data.x[idx],
302                                                                fx[idx],
303                                                                dy = sigma[idx]))
304        else:
305            linearized_data = LoaderData1D(self.data.x[idx],
306                                           fx[idx],
307                                           dy = sigma[idx])
[59a41066]308       
[472b11c]309        ##power is given only for function = power_law   
310        if power != None:
[bdd162f]311            sigma2 = linearized_data.dy * linearized_data.dy
[eb62193]312            a = -(power)
[bdd162f]313            b = (numpy.sum(linearized_data.y/sigma2) \
314                 - a*numpy.sum(linearized_data.x/sigma2))/numpy.sum(1.0/sigma2)
315           
[82703a1]316           
[bdd162f]317            deltas = linearized_data.x*a+numpy.ones(len(linearized_data.x))*b-linearized_data.y
318            residuals = numpy.sum(deltas*deltas/sigma2)
319           
320            err = math.fabs(residuals) / numpy.sum(1.0/sigma2)
321            return [a, b], [0, math.sqrt(err)]
322        else:
323            A = numpy.vstack([ linearized_data.x/linearized_data.dy,
324                               1.0/linearized_data.dy]).T       
325            (p, residuals, rank, s) = numpy.linalg.lstsq(A, linearized_data.y/linearized_data.dy)
326           
327            # Get the covariance matrix, defined as inv_cov = a_transposed * a
328            err = numpy.zeros(2)
329            try:
330                inv_cov = numpy.dot(A.transpose(), A)
331                cov = numpy.linalg.pinv(inv_cov)
332                err_matrix = math.fabs(residuals) * cov
333                err = [math.sqrt(err_matrix[0][0]), math.sqrt(err_matrix[1][1])]
334            except:
335                err = [-1.0, -1.0]
336               
337            return p, err
[aafa962]338       
[b6666d4]339
[75047cf]340class InvariantCalculator(object):
341    """
[a45622a]342    Compute invariant if data is given.
343    Can provide volume fraction and surface area if the user provides
344    Porod constant  and contrast values.
345   
346    :precondition:  the user must send a data of type DataLoader.Data1D
347                    the user provide background and scale values.
348                   
349    :note: Some computations depends on each others.
[75047cf]350    """
351    def __init__(self, data, background=0, scale=1 ):
352        """
[a45622a]353        Initialize variables.
354       
355        :param data: data must be of type DataLoader.Data1D
356        :param background: Background value. The data will be corrected before processing
357        :param scale: Scaling factor for I(q). The data will be corrected before processing
[75047cf]358        """
[b6666d4]359        # Background and scale should be private data member if the only way to
360        # change them are by instantiating a new object.
361        self._background = background
362        self._scale = scale
[75047cf]363       
[b6666d4]364        # The data should be private
365        self._data = self._get_data(data)
[f31ab59]366     
[b6666d4]367        # Since there are multiple variants of Q*, you should force the
368        # user to use the get method and keep Q* a private data member
369        self._qstar = None
370       
371        # You should keep the error on Q* so you can reuse it without
372        # recomputing the whole thing.
373        self._qstar_err = 0
[75047cf]374       
[b6666d4]375        # Extrapolation parameters
376        self._low_extrapolation_npts = 4
[59a41066]377        self._low_extrapolation_function = Guinier()
[4e80ae0]378        self._low_extrapolation_power = None
[90e5ca1]379        self._low_extrapolation_power_fitted = None
[ef9ed58]380   
[b6666d4]381        self._high_extrapolation_npts = 4
[59a41066]382        self._high_extrapolation_function = PowerLaw()
[4e80ae0]383        self._high_extrapolation_power = None
[90e5ca1]384        self._high_extrapolation_power_fitted = None
[75047cf]385       
[2e94cbde]386        # Extrapolation range
387        self._low_q_limit = Q_MINIMUM
388       
[b6666d4]389    def _get_data(self, data):
[75047cf]390        """
[a45622a]391        :note: this function must be call before computing any type
392         of invariant
393         
394        :return: new data = self._scale *data - self._background
[75047cf]395        """
[b6666d4]396        if not issubclass(data.__class__, LoaderData1D):
397            #Process only data that inherited from DataLoader.Data_info.Data1D
398            raise ValueError,"Data must be of type DataLoader.Data1D"
[6d55d81]399        #from copy import deepcopy
[82703a1]400        new_data = (self._scale * data) - self._background   
[bdd162f]401       
402        # Check that the vector lengths are equal
403        assert(len(new_data.x)==len(new_data.y))
404       
405        # Verify that the errors are set correctly
406        if new_data.dy is None or len(new_data.x) != len(new_data.dy) or \
407            (min(new_data.dy)==0 and max(new_data.dy)==0):
408            new_data.dy = numpy.ones(len(new_data.x)) 
409       
[82703a1]410        return  new_data
411     
[c4f52e3]412    def _fit(self, model, qmin=Q_MINIMUM, qmax=Q_MAXIMUM, power=None):
[75047cf]413        """
[a45622a]414        fit data with function using
415        data = self._get_data()
416        fx = Functor(data , function)
417        y = data.y
418        slope, constant = linalg.lstsq(y,fx)
419       
420        :param qmin: data first q value to consider during the fit
421        :param qmax: data last q value to consider during the fit
422        :param power : power value to consider for power-law
423        :param function: the function to use during the fit
424       
425        :return a: the scale of the function
426        :return b: the other parameter of the function for guinier will be radius
427                for power_law will be the power value
[ef9ed58]428        """
[bdd162f]429        extrapolator = Extrapolator(data=self._data, model=model)
430        p, dp = extrapolator.fit(power=power, qmin=qmin, qmax=qmax) 
[82703a1]431       
[bdd162f]432        return model.extract_model_parameters(constant=p[1], slope=p[0], dconstant=dp[1], dslope=dp[0])
[ef9ed58]433   
434    def _get_qstar(self, data):
[75047cf]435        """
[a45622a]436        Compute invariant for pinhole data.
437        This invariant is given by: ::
438   
439            q_star = x0**2 *y0 *dx0 +x1**2 *y1 *dx1
440                        + ..+ xn**2 *yn *dxn
441                       
[669aaf9]442            where n >= len(data.x)-1
[75047cf]443            dxi = 1/2*(xi+1 - xi) + (xi - xi-1)
[3bb37ef]444            dx0 = (x1 - x0)/2
445            dxn = (xn - xn-1)/2
[a45622a]446           
447        :param data: the data to use to compute invariant.
448       
449        :return q_star: invariant value for pinhole data. q_star > 0
[75047cf]450        """
[ef9ed58]451        if len(data.x) <= 1 or len(data.y) <= 1 or len(data.x)!= len(data.y):
452            msg =  "Length x and y must be equal"
453            msg += " and greater than 1; got x=%s, y=%s"%(len(data.x), len(data.y))
454            raise ValueError, msg
455        else:
456            n = len(data.x)- 1
457            #compute the first delta q
[3bb37ef]458            dx0 = (data.x[1] - data.x[0])/2
[ef9ed58]459            #compute the last delta q
[3bb37ef]460            dxn = (data.x[n] - data.x[n-1])/2
[ef9ed58]461            sum = 0
462            sum += data.x[0] * data.x[0] * data.y[0] * dx0
463            sum += data.x[n] * data.x[n] * data.y[n] * dxn
464           
465            if len(data.x) == 2:
466                return sum
467            else:
468                #iterate between for element different from the first and the last
469                for i in xrange(1, n-1):
470                    dxi = (data.x[i+1] - data.x[i-1])/2
471                    sum += data.x[i] * data.x[i] * data.y[i] * dxi
472                return sum
473           
[bdd162f]474    def _get_qstar_uncertainty(self, data):
[75047cf]475        """
[a45622a]476        Compute invariant uncertainty with with pinhole data.
477        This uncertainty is given as follow: ::
478       
479           dq_star = math.sqrt[(x0**2*(dy0)*dx0)**2 +
480                (x1**2 *(dy1)*dx1)**2 + ..+ (xn**2 *(dyn)*dxn)**2 ]
481        where n >= len(data.x)-1
482        dxi = 1/2*(xi+1 - xi) + (xi - xi-1)
483        dx0 = (x1 - x0)/2
484        dxn = (xn - xn-1)/2
485        dyn: error on dy
486       
487        :param data:
488        :note: if data doesn't contain dy assume dy= math.sqrt(data.y)
[bdd162f]489        """         
[ef9ed58]490        if len(data.x) <= 1 or len(data.y) <= 1 or \
[bdd162f]491            len(data.x) != len(data.y) or \
492            (data.dy is not None and (len(data.dy) != len(data.y))):
[ef9ed58]493            msg = "Length of data.x and data.y must be equal"
494            msg += " and greater than 1; got x=%s, y=%s"%(len(data.x),
495                                                         len(data.y))
496            raise ValueError, msg
497        else:
498            #Create error for data without dy error
[bdd162f]499            if data.dy is None:
[ef9ed58]500                dy = math.sqrt(y) 
501            else:
502                dy = data.dy
503               
504            n = len(data.x) - 1
505            #compute the first delta
[3bb37ef]506            dx0 = (data.x[1] - data.x[0])/2
[ef9ed58]507            #compute the last delta
[3bb37ef]508            dxn= (data.x[n] - data.x[n-1])/2
[ef9ed58]509            sum = 0
510            sum += (data.x[0] * data.x[0] * dy[0] * dx0)**2
511            sum += (data.x[n] * data.x[n] * dy[n] * dxn)**2
512            if len(data.x) == 2:
513                return math.sqrt(sum)
514            else:
515                #iterate between for element different from the first and the last
516                for i in xrange(1, n-1):
517                    dxi = (data.x[i+1] - data.x[i-1])/2
518                    sum += (data.x[i] * data.x[i] * dy[i] * dxi)**2
519                return math.sqrt(sum)
[b6666d4]520       
[aafa962]521    def _get_extrapolated_data(self, model, npts=INTEGRATION_NSTEPS,
522                              q_start=Q_MINIMUM, q_end=Q_MAXIMUM):
523        """
[a45622a]524        :return: extrapolate data create from data
[aafa962]525        """
526        #create new Data1D to compute the invariant
527        q = numpy.linspace(start=q_start,
[bdd162f]528                           stop=q_end,
529                           num=npts,
530                           endpoint=True)
[aafa962]531        iq = model.evaluate_model(q)
[bdd162f]532        diq = model.evaluate_model_errors(q)
[aafa962]533         
[bdd162f]534        result_data = LoaderData1D(x=q, y=iq, dy=diq)
[aafa962]535        return result_data
[76c1727]536   
[6d55d81]537    def get_data(self):
538        """
[a45622a]539        :return: self._data
[6d55d81]540        """
541        return self._data
542   
[90e5ca1]543    def get_extrapolation_power(self, range='high'):
544        """
[a45622a]545        :return: the fitted power for power law function for a given extrapolation range
[90e5ca1]546        """
547        if range == 'low':
548            return self._low_extrapolation_power_fitted
549        return self._high_extrapolation_power_fitted
550   
[bdd162f]551    def get_qstar_low(self):
[75047cf]552        """
[a45622a]553        Compute the invariant for extrapolated data at low q range.
554       
555        Implementation:
556            data = self._get_extra_data_low()
557            return self._get_qstar()
[b6666d4]558           
[a45622a]559        :return q_star: the invariant for data extrapolated at low q.
[75047cf]560        """
[aafa962]561        # Data boundaries for fitting
[ef9ed58]562        qmin = self._data.x[0]
[437a9f0]563        qmax = self._data.x[self._low_extrapolation_npts - 1]
[aafa962]564       
[2a11d09]565        # Extrapolate the low-Q data
[c4f52e3]566        p, dp = self._fit(model=self._low_extrapolation_function,
567                              qmin=qmin,
568                          qmax=qmax,
569                          power=self._low_extrapolation_power)
570        self._low_extrapolation_power_fitted = p[0]
[bdd162f]571       
572        # Distribution starting point
[2e94cbde]573        self._low_q_limit = Q_MINIMUM
[3bb37ef]574        if Q_MINIMUM >= qmin:
[2e94cbde]575            self._low_q_limit = qmin/10
[82703a1]576       
[bdd162f]577        data = self._get_extrapolated_data(model=self._low_extrapolation_function,
[aafa962]578                                               npts=INTEGRATION_NSTEPS,
[2e94cbde]579                                               q_start=self._low_q_limit, q_end=qmin)
[bdd162f]580       
581        # Systematic error
582        # If we have smearing, the shape of the I(q) distribution at low Q will
583        # may not be a Guinier or simple power law. The following is a conservative
584        # estimation for the systematic error.
[2e94cbde]585        err = qmin*qmin*math.fabs((qmin-self._low_q_limit)*(data.y[0] - data.y[INTEGRATION_NSTEPS-1]))
[bdd162f]586        return self._get_qstar(data), self._get_qstar_uncertainty(data)+err
587       
588    def get_qstar_high(self):
[75047cf]589        """
[a45622a]590        Compute the invariant for extrapolated data at high q range.
591       
592        Implementation:
593            data = self._get_extra_data_high()
594            return self._get_qstar()
[75047cf]595           
[a45622a]596        :return q_star: the invariant for data extrapolated at high q.
[75047cf]597        """
[82703a1]598        # Data boundaries for fitting
[ef9ed58]599        x_len = len(self._data.x) - 1
[82703a1]600        qmin = self._data.x[x_len - (self._high_extrapolation_npts - 1)]
[ef9ed58]601        qmax = self._data.x[x_len]
602       
[59a41066]603        # fit the data with a model to get the appropriate parameters
[c4f52e3]604        p, dp = self._fit(model=self._high_extrapolation_function,
605                          qmin=qmin,
606                          qmax=qmax,
607                          power=self._high_extrapolation_power)
608        self._high_extrapolation_power_fitted = p[0]
[aafa962]609       
[ef9ed58]610        #create new Data1D to compute the invariant
[bdd162f]611        data = self._get_extrapolated_data(model=self._high_extrapolation_function,
612                                           npts=INTEGRATION_NSTEPS,
[2e94cbde]613                                           q_start=qmax, q_end=Q_MAXIMUM)       
[76c1727]614       
[bdd162f]615        return self._get_qstar(data), self._get_qstar_uncertainty(data)
[76c1727]616   
[c75a8ed]617    def get_extra_data_low(self, npts_in=None, q_start=None, npts=20):
[2e94cbde]618        """
[a45622a]619        Returns the extrapolated data used for the loew-Q invariant calculation.
620        By default, the distribution will cover the data points used for the
621        extrapolation. The number of overlap points is a parameter (npts_in).
622        By default, the maximum q-value of the distribution will be 
623        the minimum q-value used when extrapolating for the purpose of the
624        invariant calculation.
625       
626        :param npts_in: number of data points for which the extrapolated data overlap
627        :param q_start: is the minimum value to uses for extrapolated data
628        :param npts: the number of points in the extrapolated distribution
[1702180]629           
[76c1727]630        """
[2e94cbde]631        # Get extrapolation range
632        if q_start is None:
633            q_start = self._low_q_limit
[bdd162f]634           
[2e94cbde]635        if npts_in is None:
[76c1727]636            npts_in = self._low_extrapolation_npts
[2e94cbde]637        q_end = self._data.x[max(0, npts_in-1)]
[76c1727]638       
[2e94cbde]639        if q_start >= q_end:
640            return numpy.zeros(0), numpy.zeros(0)
641
642        return self._get_extrapolated_data(model=self._low_extrapolation_function,
[c75a8ed]643                                           npts=npts,
[2e94cbde]644                                           q_start=q_start, q_end=q_end)
[76c1727]645         
[2e94cbde]646    def get_extra_data_high(self, npts_in=None, q_end=Q_MAXIMUM, npts=20):
647        """
[a45622a]648        Returns the extrapolated data used for the high-Q invariant calculation.
649        By default, the distribution will cover the data points used for the
650        extrapolation. The number of overlap points is a parameter (npts_in).
651        By default, the maximum q-value of the distribution will be Q_MAXIMUM,
652        the maximum q-value used when extrapolating for the purpose of the
653        invariant calculation.
654       
655        :param npts_in: number of data points for which the extrapolated data overlap
656        :param q_end: is the maximum value to uses for extrapolated data
657        :param npts: the number of points in the extrapolated distribution
[76c1727]658        """
[2e94cbde]659        # Get extrapolation range
660        if npts_in is None:
[76c1727]661            npts_in = self._high_extrapolation_npts
[c75a8ed]662        _npts = len(self._data.x)
663        q_start = self._data.x[min(_npts, _npts-npts_in)]
[76c1727]664       
[2e94cbde]665        if q_start >= q_end:
666            return numpy.zeros(0), numpy.zeros(0)
667       
668        return self._get_extrapolated_data(model=self._high_extrapolation_function,
669                                           npts=npts,
670                                           q_start=q_start, q_end=q_end)
[4e80ae0]671     
672    def set_extrapolation(self, range, npts=4, function=None, power=None):
673        """
[a45622a]674        Set the extrapolation parameters for the high or low Q-range.
675        Note that this does not turn extrapolation on or off.
676       
677        :param range: a keyword set the type of extrapolation . type string
678        :param npts: the numbers of q points of data to consider for extrapolation
679        :param function: a keyword to select the function to use for extrapolation.
680            of type string.
681        :param power: an power to apply power_low function
[4e80ae0]682               
683        """
684        range = range.lower()
685        if range not in ['high', 'low']:
686            raise ValueError, "Extrapolation range should be 'high' or 'low'"
687        function = function.lower()
688        if function not in ['power_law', 'guinier']:
689            raise ValueError, "Extrapolation function should be 'guinier' or 'power_law'"
690       
691        if range == 'high':
692            if function != 'power_law':
693                raise ValueError, "Extrapolation only allows a power law at high Q"
694            self._high_extrapolation_npts  = npts
695            self._high_extrapolation_power = power
[90e5ca1]696            self._high_extrapolation_power_fitted = power
[4e80ae0]697        else:
698            if function == 'power_law':
[59a41066]699                self._low_extrapolation_function = PowerLaw()
[4e80ae0]700            else:
[59a41066]701                self._low_extrapolation_function = Guinier()
[4e80ae0]702            self._low_extrapolation_npts  = npts
703            self._low_extrapolation_power = power
[90e5ca1]704            self._low_extrapolation_power_fitted = power
[4e80ae0]705       
706    def get_qstar(self, extrapolation=None):
707        """
[a45622a]708        Compute the invariant of the local copy of data.
709       
710        :param extrapolation: string to apply optional extrapolation
[4e80ae0]711           
[a45622a]712        :return q_star: invariant of the data within data's q range
713       
714        :warning: When using setting data to Data1D , the user is responsible of
[4e80ae0]715            checking that the scale and the background are properly apply to the data
[a45622a]716       
[4e80ae0]717        """
[bdd162f]718        self._qstar = self._get_qstar(self._data)
719        self._qstar_err = self._get_qstar_uncertainty(self._data)
[4e80ae0]720       
721        if extrapolation is None:
722            return self._qstar
[bdd162f]723       
724        # Compute invariant plus invariant of extrapolated data
[4e80ae0]725        extrapolation = extrapolation.lower()   
726        if extrapolation == "low":
[bdd162f]727            qs_low, dqs_low = self.get_qstar_low()
728            qs_hi, dqs_hi   = 0, 0
729           
[4e80ae0]730        elif extrapolation == "high":
[bdd162f]731            qs_low, dqs_low = 0, 0
732            qs_hi, dqs_hi   = self.get_qstar_high()
733           
[4e80ae0]734        elif extrapolation == "both":
[bdd162f]735            qs_low, dqs_low = self.get_qstar_low()
736            qs_hi, dqs_hi   = self.get_qstar_high()
737           
738        self._qstar     += qs_low + qs_hi
739        self._qstar_err = math.sqrt(self._qstar_err*self._qstar_err \
740                                    + dqs_low*dqs_low + dqs_hi*dqs_hi)
741       
742        return self._qstar
[4e80ae0]743       
[bdd162f]744    def get_surface(self, contrast, porod_const, extrapolation=None):
[4e80ae0]745        """
[a45622a]746        Compute the specific surface from the data.
747       
748        Implementation::
749       
750          V =  self.get_volume_fraction(contrast, extrapolation)
751   
752          Compute the surface given by:
753            surface = (2*pi *V(1- V)*porod_const)/ q_star
754           
755        :param contrast: contrast value to compute the volume
756        :param porod_const: Porod constant to compute the surface
757        :param extrapolation: string to apply optional extrapolation
[4e80ae0]758       
[a45622a]759        :return: specific surface
[4e80ae0]760        """
761        # Compute the volume
[bdd162f]762        volume = self.get_volume_fraction(contrast, extrapolation)
[4e80ae0]763        return 2 * math.pi * volume *(1 - volume) * float(porod_const)/self._qstar
764       
[bdd162f]765    def get_volume_fraction(self, contrast, extrapolation=None):
[4e80ae0]766        """
[a45622a]767        Compute volume fraction is deduced as follow: ::
768       
[4e80ae0]769            q_star = 2*(pi*contrast)**2* volume( 1- volume)
770            for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2)
771            we get 2 values of volume:
772                 with   1 - 4 * k >= 0
773                 volume1 = (1- sqrt(1- 4*k))/2
774                 volume2 = (1+ sqrt(1- 4*k))/2
775           
776            q_star: the invariant value included extrapolation is applied
777                         unit  1/A^(3)*1/cm
778                    q_star = self.get_qstar()
779                   
[bdd162f]780            the result returned will be 0 <= volume <= 1
[a45622a]781       
782        :param contrast: contrast value provides by the user of type float.
783                 contrast unit is 1/A^(2)= 10^(16)cm^(2)
784        :param extrapolation: string to apply optional extrapolation
785       
786        :return: volume fraction
787       
788        :note: volume fraction must have no unit
[4e80ae0]789        """
[bdd162f]790        if contrast <= 0:
791            raise ValueError, "The contrast parameter must be greater than zero" 
[4e80ae0]792       
[bdd162f]793        # Make sure Q star is up to date
794        self.get_qstar(extrapolation)
[4e80ae0]795       
[bdd162f]796        if self._qstar <= 0:
797            raise RuntimeError, "Invalid invariant: Invariant Q* must be greater than zero"
[4e80ae0]798       
799        # Compute intermediate constant
800        k =  1.e-8 * self._qstar/(2 * (math.pi * math.fabs(float(contrast)))**2)
[bdd162f]801        # Check discriminant value
[4e80ae0]802        discrim = 1 - 4 * k
803       
804        # Compute volume fraction
805        if discrim < 0:
[bdd162f]806            raise RuntimeError, "Could not compute the volume fraction: negative discriminant"
[4e80ae0]807        elif discrim == 0:
808            return 1/2
809        else:
810            volume1 = 0.5 * (1 - math.sqrt(discrim))
811            volume2 = 0.5 * (1 + math.sqrt(discrim))
812           
813            if 0 <= volume1 and volume1 <= 1:
814                return volume1
815            elif 0 <= volume2 and volume2 <= 1: 
816                return volume2
[bdd162f]817            raise RuntimeError, "Could not compute the volume fraction: inconsistent results"
[ef9ed58]818   
819    def get_qstar_with_error(self, extrapolation=None):
[75047cf]820        """
[a45622a]821        Compute the invariant uncertainty.
822        This uncertainty computation depends on whether or not the data is
823        smeared.
824       
825        :param extrapolation: string to apply optional extrapolation
826       
827        :return: invariant, the invariant uncertainty
[bdd162f]828        """   
829        self.get_qstar(extrapolation)
[ef9ed58]830        return self._qstar, self._qstar_err
831   
[bdd162f]832    def get_volume_fraction_with_error(self, contrast, extrapolation=None):
[75047cf]833        """
[a45622a]834        Compute uncertainty on volume value as well as the volume fraction
835        This uncertainty is given by the following equation: ::
836       
[75047cf]837            dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star))
838                                 
[437a9f0]839            for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2)
[2cce133]840           
[75047cf]841            q_star: the invariant value including extrapolated value if existing
842            dq_star: the invariant uncertainty
843            dV: the volume uncertainty
[a45622a]844       
845        The uncertainty will be set to -1 if it can't be computed.
846       
847        :param contrast: contrast value
848        :param extrapolation: string to apply optional extrapolation
849       
850        :return: V, dV = volume fraction, error on volume fraction
[75047cf]851        """
[bdd162f]852        volume = self.get_volume_fraction(contrast, extrapolation)
[75047cf]853       
[bdd162f]854        # Compute error
[437a9f0]855        k =  1.e-8 * self._qstar /(2 * (math.pi* math.fabs(float(contrast)))**2)
[bdd162f]856        # Check value inside the sqrt function
[ef9ed58]857        value = 1 - k * self._qstar
[bad9ae2]858        if (value) <= 0:
[bdd162f]859            uncertainty = -1
[ef9ed58]860        # Compute uncertainty
[bdd162f]861        uncertainty = math.fabs((0.5 * 4 * k * self._qstar_err)/(2 * math.sqrt(1 - k * self._qstar)))
[ef9ed58]862       
[bdd162f]863        return volume, uncertainty
[ef9ed58]864   
[bdd162f]865    def get_surface_with_error(self, contrast, porod_const, extrapolation=None):
[75047cf]866        """
[a45622a]867        Compute uncertainty of the surface value as well as the surface value.
868        The uncertainty is given as follow: ::
869       
[75047cf]870            dS = porod_const *2*pi[( dV -2*V*dV)/q_star
871                 + dq_star(v-v**2)
872                 
[bdd162f]873            q_star: the invariant value
[75047cf]874            dq_star: the invariant uncertainty
875            V: the volume fraction value
876            dV: the volume uncertainty
[a45622a]877       
878        :param contrast: contrast value
879        :param porod_const: porod constant value
880        :param extrapolation: string to apply optional extrapolation
881       
882        :return S, dS: the surface, with its uncertainty
[75047cf]883        """
[bdd162f]884        # We get the volume fraction, with error
885        #   get_volume_fraction_with_error calls get_volume_fraction
886        #   get_volume_fraction calls get_qstar
887        #   which computes Qstar and dQstar
888        v, dv = self.get_volume_fraction_with_error(contrast, extrapolation)
889
[c75a8ed]890        s = self.get_surface(contrast=contrast, porod_const=porod_const, 
891                             extrapolation=extrapolation)
[ef9ed58]892        ds = porod_const * 2 * math.pi * (( dv - 2 * v * dv)/ self._qstar\
893                 + self._qstar_err * ( v - v**2))
[bdd162f]894
[ef9ed58]895        return s, ds
Note: See TracBrowser for help on using the repository browser.