[a45622a] | 1 | ##################################################################### |
---|
| 2 | #This software was developed by the University of Tennessee as part of the |
---|
| 3 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | #project funded by the US National Science Foundation. |
---|
| 5 | #See the license text in license.txt |
---|
| 6 | #copyright 2010, University of Tennessee |
---|
| 7 | ###################################################################### |
---|
[2e94cbde] | 8 | |
---|
| 9 | """ |
---|
[a45622a] | 10 | This module implements invariant and its related computations. |
---|
[2e94cbde] | 11 | |
---|
[a45622a] | 12 | :author: Gervaise B. Alina/UTK |
---|
| 13 | :author: Mathieu Doucet/UTK |
---|
| 14 | :author: Jae Cho/UTK |
---|
[c75a8ed] | 15 | |
---|
[75047cf] | 16 | """ |
---|
| 17 | import math |
---|
[ef9ed58] | 18 | import numpy |
---|
[75047cf] | 19 | |
---|
[46d50ca] | 20 | from DataLoader.data_info import Data1D as LoaderData1D |
---|
[75047cf] | 21 | |
---|
[b6666d4] | 22 | # The minimum q-value to be used when extrapolating |
---|
| 23 | Q_MINIMUM = 1e-5 |
---|
| 24 | |
---|
| 25 | # The maximum q-value to be used when extrapolating |
---|
| 26 | Q_MAXIMUM = 10 |
---|
| 27 | |
---|
| 28 | # Number of steps in the extrapolation |
---|
| 29 | INTEGRATION_NSTEPS = 1000 |
---|
| 30 | |
---|
[59a41066] | 31 | class Transform(object): |
---|
[ef9ed58] | 32 | """ |
---|
[a45622a] | 33 | Define interface that need to compute a function or an inverse |
---|
| 34 | function given some x, y |
---|
[59a41066] | 35 | """ |
---|
[76c1727] | 36 | |
---|
| 37 | def linearize_data(self, data): |
---|
[59a41066] | 38 | """ |
---|
[a45622a] | 39 | Linearize data so that a linear fit can be performed. |
---|
| 40 | Filter out the data that can't be transformed. |
---|
| 41 | |
---|
| 42 | :param data: LoadData1D instance |
---|
| 43 | |
---|
[76c1727] | 44 | """ |
---|
| 45 | # Check that the vector lengths are equal |
---|
| 46 | assert(len(data.x)==len(data.y)) |
---|
| 47 | if data.dy is not None: |
---|
| 48 | assert(len(data.x)==len(data.dy)) |
---|
| 49 | dy = data.dy |
---|
| 50 | else: |
---|
[bdd162f] | 51 | dy = numpy.ones(len(data.y)) |
---|
[76c1727] | 52 | |
---|
| 53 | # Transform the data |
---|
[bdd162f] | 54 | data_points = zip(data.x, data.y, dy) |
---|
| 55 | |
---|
[76c1727] | 56 | output_points = [(self.linearize_q_value(p[0]), |
---|
| 57 | math.log(p[1]), |
---|
[bdd162f] | 58 | p[2]/p[1]) for p in data_points if p[0]>0 and p[1]>0 and p[2]>0] |
---|
[76c1727] | 59 | |
---|
| 60 | x_out, y_out, dy_out = zip(*output_points) |
---|
| 61 | |
---|
[bdd162f] | 62 | # Create Data1D object |
---|
[76c1727] | 63 | x_out = numpy.asarray(x_out) |
---|
| 64 | y_out = numpy.asarray(y_out) |
---|
| 65 | dy_out = numpy.asarray(dy_out) |
---|
[bdd162f] | 66 | linear_data = LoaderData1D(x=x_out, y=y_out, dy=dy_out) |
---|
[76c1727] | 67 | |
---|
| 68 | return linear_data |
---|
[bdd162f] | 69 | |
---|
| 70 | def get_allowed_bins(self, data): |
---|
[76c1727] | 71 | """ |
---|
[a45622a] | 72 | Goes through the data points and returns a list of boolean values |
---|
| 73 | to indicate whether each points is allowed by the model or not. |
---|
| 74 | |
---|
| 75 | :param data: Data1D object |
---|
[59a41066] | 76 | """ |
---|
[bdd162f] | 77 | return [p[0]>0 and p[1]>0 and p[2]>0 for p in zip(data.x, data.y, data.dy)] |
---|
| 78 | |
---|
[aafa962] | 79 | def linearize_q_value(self, value): |
---|
[59a41066] | 80 | """ |
---|
[a45622a] | 81 | Transform the input q-value for linearization |
---|
[59a41066] | 82 | """ |
---|
[82703a1] | 83 | return NotImplemented |
---|
[aafa962] | 84 | |
---|
[bdd162f] | 85 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
[59a41066] | 86 | """ |
---|
[a45622a] | 87 | set private member |
---|
[59a41066] | 88 | """ |
---|
[82703a1] | 89 | return NotImplemented |
---|
[aafa962] | 90 | |
---|
| 91 | def evaluate_model(self, x): |
---|
[59a41066] | 92 | """ |
---|
[a45622a] | 93 | Returns an array f(x) values where f is the Transform function. |
---|
[59a41066] | 94 | """ |
---|
[82703a1] | 95 | return NotImplemented |
---|
| 96 | |
---|
[bdd162f] | 97 | def evaluate_model_errors(self, x): |
---|
| 98 | """ |
---|
[a45622a] | 99 | Returns an array of I(q) errors |
---|
[bdd162f] | 100 | """ |
---|
| 101 | return NotImplemented |
---|
| 102 | |
---|
[59a41066] | 103 | class Guinier(Transform): |
---|
| 104 | """ |
---|
[a45622a] | 105 | class of type Transform that performs operations related to guinier |
---|
| 106 | function |
---|
[59a41066] | 107 | """ |
---|
| 108 | def __init__(self, scale=1, radius=60): |
---|
| 109 | Transform.__init__(self) |
---|
| 110 | self.scale = scale |
---|
| 111 | self.radius = radius |
---|
[bdd162f] | 112 | ## Uncertainty of scale parameter |
---|
| 113 | self.dscale = 0 |
---|
| 114 | ## Unvertainty of radius parameter |
---|
| 115 | self.dradius = 0 |
---|
[76c1727] | 116 | |
---|
[aafa962] | 117 | def linearize_q_value(self, value): |
---|
[82703a1] | 118 | """ |
---|
[a45622a] | 119 | Transform the input q-value for linearization |
---|
| 120 | |
---|
| 121 | :param value: q-value |
---|
| 122 | |
---|
| 123 | :return: q*q |
---|
[82703a1] | 124 | """ |
---|
| 125 | return value * value |
---|
[59a41066] | 126 | |
---|
[bdd162f] | 127 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
[a45622a] | 128 | """ |
---|
| 129 | assign new value to the scale and the radius |
---|
[82703a1] | 130 | """ |
---|
[bdd162f] | 131 | self.scale = math.exp(constant) |
---|
| 132 | self.radius = math.sqrt(-3 * slope) |
---|
| 133 | |
---|
| 134 | # Errors |
---|
| 135 | self.dscale = math.exp(constant)*dconstant |
---|
| 136 | self.dradius = -3.0/2.0/math.sqrt(-3 * slope)*dslope |
---|
[59a41066] | 137 | |
---|
[c4f52e3] | 138 | return [self.radius, self.scale], [self.dradius, self.dscale] |
---|
| 139 | |
---|
[aafa962] | 140 | def evaluate_model(self, x): |
---|
[59a41066] | 141 | """ |
---|
[a45622a] | 142 | return F(x)= scale* e-((radius*x)**2/3) |
---|
[59a41066] | 143 | """ |
---|
| 144 | return self._guinier(x) |
---|
[aafa962] | 145 | |
---|
[bdd162f] | 146 | def evaluate_model_errors(self, x): |
---|
| 147 | """ |
---|
[a45622a] | 148 | Returns the error on I(q) for the given array of q-values |
---|
| 149 | |
---|
| 150 | :param x: array of q-values |
---|
[bdd162f] | 151 | """ |
---|
| 152 | p1 = numpy.array([self.dscale * math.exp(-((self.radius * q)**2/3)) for q in x]) |
---|
| 153 | p2 = numpy.array([self.scale * math.exp(-((self.radius * q)**2/3)) * (-(q**2/3)) * 2 * self.radius * self.dradius for q in x]) |
---|
| 154 | diq2 = p1*p1 + p2*p2 |
---|
| 155 | return numpy.array( [math.sqrt(err) for err in diq2] ) |
---|
| 156 | |
---|
[59a41066] | 157 | def _guinier(self, x): |
---|
| 158 | """ |
---|
[a45622a] | 159 | Retrive the guinier function after apply an inverse guinier function |
---|
| 160 | to x |
---|
| 161 | Compute a F(x) = scale* e-((radius*x)**2/3). |
---|
| 162 | |
---|
| 163 | :param x: a vector of q values |
---|
| 164 | :param scale: the scale value |
---|
| 165 | :param radius: the guinier radius value |
---|
| 166 | |
---|
| 167 | :return: F(x) |
---|
[59a41066] | 168 | """ |
---|
| 169 | # transform the radius of coming from the inverse guinier function to a |
---|
| 170 | # a radius of a guinier function |
---|
| 171 | if self.radius <= 0: |
---|
| 172 | raise ValueError("Rg expected positive value, but got %s"%self.radius) |
---|
| 173 | value = numpy.array([math.exp(-((self.radius * i)**2/3)) for i in x ]) |
---|
| 174 | return self.scale * value |
---|
| 175 | |
---|
| 176 | class PowerLaw(Transform): |
---|
| 177 | """ |
---|
[a45622a] | 178 | class of type transform that perform operation related to power_law |
---|
| 179 | function |
---|
[ef9ed58] | 180 | """ |
---|
[59a41066] | 181 | def __init__(self, scale=1, power=4): |
---|
| 182 | Transform.__init__(self) |
---|
| 183 | self.scale = scale |
---|
| 184 | self.power = power |
---|
[76c1727] | 185 | |
---|
[aafa962] | 186 | def linearize_q_value(self, value): |
---|
| 187 | """ |
---|
[a45622a] | 188 | Transform the input q-value for linearization |
---|
| 189 | |
---|
| 190 | :param value: q-value |
---|
| 191 | |
---|
| 192 | :return: log(q) |
---|
[aafa962] | 193 | """ |
---|
| 194 | return math.log(value) |
---|
| 195 | |
---|
[bdd162f] | 196 | def extract_model_parameters(self, constant, slope, dconstant=0, dslope=0): |
---|
[82703a1] | 197 | """ |
---|
[a45622a] | 198 | Assign new value to the scale and the power |
---|
[82703a1] | 199 | """ |
---|
[bdd162f] | 200 | self.power = -slope |
---|
| 201 | self.scale = math.exp(constant) |
---|
| 202 | |
---|
| 203 | # Errors |
---|
| 204 | self.dscale = math.exp(constant)*dconstant |
---|
[c4f52e3] | 205 | self.dpower = -dslope |
---|
| 206 | |
---|
| 207 | return [self.power, self.scale], [self.dpower, self.dscale] |
---|
[82703a1] | 208 | |
---|
[aafa962] | 209 | def evaluate_model(self, x): |
---|
[59a41066] | 210 | """ |
---|
[a45622a] | 211 | given a scale and a radius transform x, y using a power_law |
---|
| 212 | function |
---|
[59a41066] | 213 | """ |
---|
| 214 | return self._power_law(x) |
---|
[bdd162f] | 215 | |
---|
| 216 | def evaluate_model_errors(self, x): |
---|
| 217 | """ |
---|
[a45622a] | 218 | Returns the error on I(q) for the given array of q-values |
---|
| 219 | :param x: array of q-values |
---|
[bdd162f] | 220 | """ |
---|
| 221 | p1 = numpy.array([self.dscale * math.pow(q, -self.power) for q in x]) |
---|
[c4f52e3] | 222 | p2 = numpy.array([self.scale * self.power * math.pow(q, -self.power-1) * self.dpower for q in x]) |
---|
[bdd162f] | 223 | diq2 = p1*p1 + p2*p2 |
---|
| 224 | return numpy.array( [math.sqrt(err) for err in diq2] ) |
---|
[59a41066] | 225 | |
---|
| 226 | def _power_law(self, x): |
---|
| 227 | """ |
---|
[a45622a] | 228 | F(x) = scale* (x)^(-power) |
---|
| 229 | when power= 4. the model is porod |
---|
| 230 | else power_law |
---|
| 231 | The model has three parameters: :: |
---|
| 232 | 1. x: a vector of q values |
---|
| 233 | 2. power: power of the function |
---|
| 234 | 3. scale : scale factor value |
---|
| 235 | |
---|
| 236 | :param x: array |
---|
| 237 | :return: F(x) |
---|
[59a41066] | 238 | """ |
---|
| 239 | if self.power <= 0: |
---|
[82703a1] | 240 | raise ValueError("Power_law function expected positive power, but got %s"%self.power) |
---|
[59a41066] | 241 | if self.scale <= 0: |
---|
| 242 | raise ValueError("scale expected positive value, but got %s"%self.scale) |
---|
| 243 | |
---|
| 244 | value = numpy.array([ math.pow(i, -self.power) for i in x ]) |
---|
| 245 | return self.scale * value |
---|
[ef9ed58] | 246 | |
---|
[59a41066] | 247 | class Extrapolator: |
---|
[75047cf] | 248 | """ |
---|
[a45622a] | 249 | Extrapolate I(q) distribution using a given model |
---|
[75047cf] | 250 | """ |
---|
[bdd162f] | 251 | def __init__(self, data, model=None): |
---|
[75047cf] | 252 | """ |
---|
[a45622a] | 253 | Determine a and b given a linear equation y = ax + b |
---|
| 254 | |
---|
| 255 | If a model is given, it will be used to linearize the data before |
---|
| 256 | the extrapolation is performed. If None, a simple linear fit will be done. |
---|
| 257 | |
---|
| 258 | :param data: data containing x and y such as y = ax + b |
---|
| 259 | :param model: optional Transform object |
---|
[75047cf] | 260 | """ |
---|
| 261 | self.data = data |
---|
[bdd162f] | 262 | self.model = model |
---|
[59a41066] | 263 | |
---|
[2a11d09] | 264 | # Set qmin as the lowest non-zero value |
---|
| 265 | self.qmin = Q_MINIMUM |
---|
| 266 | for q_value in self.data.x: |
---|
[59a41066] | 267 | if q_value > 0: |
---|
[2a11d09] | 268 | self.qmin = q_value |
---|
| 269 | break |
---|
| 270 | self.qmax = max(self.data.x) |
---|
[bdd162f] | 271 | |
---|
| 272 | def fit(self, power=None, qmin=None, qmax=None): |
---|
[75047cf] | 273 | """ |
---|
[a45622a] | 274 | Fit data for y = ax + b return a and b |
---|
| 275 | |
---|
| 276 | :param power: a fixed, otherwise None |
---|
| 277 | :param qmin: Minimum Q-value |
---|
| 278 | :param qmax: Maximum Q-value |
---|
[75047cf] | 279 | """ |
---|
[bdd162f] | 280 | if qmin is None: |
---|
| 281 | qmin = self.qmin |
---|
| 282 | if qmax is None: |
---|
| 283 | qmax = self.qmax |
---|
| 284 | |
---|
| 285 | # Identify the bin range for the fit |
---|
| 286 | idx = (self.data.x >= qmin) & (self.data.x <= qmax) |
---|
| 287 | |
---|
[437a9f0] | 288 | fx = numpy.zeros(len(self.data.x)) |
---|
[59a41066] | 289 | |
---|
[bdd162f] | 290 | # Uncertainty |
---|
| 291 | if type(self.data.dy)==numpy.ndarray and len(self.data.dy)==len(self.data.x): |
---|
[3082632] | 292 | sigma = self.data.dy |
---|
[2a11d09] | 293 | else: |
---|
| 294 | sigma = numpy.ones(len(self.data.x)) |
---|
[59a41066] | 295 | |
---|
[9b6497bb] | 296 | # Compute theory data f(x) |
---|
[bdd162f] | 297 | fx[idx] = self.data.y[idx] |
---|
[472b11c] | 298 | |
---|
[bdd162f] | 299 | # Linearize the data |
---|
| 300 | if self.model is not None: |
---|
| 301 | linearized_data = self.model.linearize_data(LoaderData1D(self.data.x[idx], |
---|
| 302 | fx[idx], |
---|
| 303 | dy = sigma[idx])) |
---|
| 304 | else: |
---|
| 305 | linearized_data = LoaderData1D(self.data.x[idx], |
---|
| 306 | fx[idx], |
---|
| 307 | dy = sigma[idx]) |
---|
[59a41066] | 308 | |
---|
[472b11c] | 309 | ##power is given only for function = power_law |
---|
| 310 | if power != None: |
---|
[bdd162f] | 311 | sigma2 = linearized_data.dy * linearized_data.dy |
---|
[eb62193] | 312 | a = -(power) |
---|
[bdd162f] | 313 | b = (numpy.sum(linearized_data.y/sigma2) \ |
---|
| 314 | - a*numpy.sum(linearized_data.x/sigma2))/numpy.sum(1.0/sigma2) |
---|
| 315 | |
---|
[82703a1] | 316 | |
---|
[bdd162f] | 317 | deltas = linearized_data.x*a+numpy.ones(len(linearized_data.x))*b-linearized_data.y |
---|
| 318 | residuals = numpy.sum(deltas*deltas/sigma2) |
---|
| 319 | |
---|
| 320 | err = math.fabs(residuals) / numpy.sum(1.0/sigma2) |
---|
| 321 | return [a, b], [0, math.sqrt(err)] |
---|
| 322 | else: |
---|
| 323 | A = numpy.vstack([ linearized_data.x/linearized_data.dy, |
---|
| 324 | 1.0/linearized_data.dy]).T |
---|
| 325 | (p, residuals, rank, s) = numpy.linalg.lstsq(A, linearized_data.y/linearized_data.dy) |
---|
| 326 | |
---|
| 327 | # Get the covariance matrix, defined as inv_cov = a_transposed * a |
---|
| 328 | err = numpy.zeros(2) |
---|
| 329 | try: |
---|
| 330 | inv_cov = numpy.dot(A.transpose(), A) |
---|
| 331 | cov = numpy.linalg.pinv(inv_cov) |
---|
| 332 | err_matrix = math.fabs(residuals) * cov |
---|
| 333 | err = [math.sqrt(err_matrix[0][0]), math.sqrt(err_matrix[1][1])] |
---|
| 334 | except: |
---|
| 335 | err = [-1.0, -1.0] |
---|
| 336 | |
---|
| 337 | return p, err |
---|
[aafa962] | 338 | |
---|
[b6666d4] | 339 | |
---|
[75047cf] | 340 | class InvariantCalculator(object): |
---|
| 341 | """ |
---|
[a45622a] | 342 | Compute invariant if data is given. |
---|
| 343 | Can provide volume fraction and surface area if the user provides |
---|
| 344 | Porod constant and contrast values. |
---|
| 345 | |
---|
| 346 | :precondition: the user must send a data of type DataLoader.Data1D |
---|
| 347 | the user provide background and scale values. |
---|
| 348 | |
---|
| 349 | :note: Some computations depends on each others. |
---|
[75047cf] | 350 | """ |
---|
| 351 | def __init__(self, data, background=0, scale=1 ): |
---|
| 352 | """ |
---|
[a45622a] | 353 | Initialize variables. |
---|
| 354 | |
---|
| 355 | :param data: data must be of type DataLoader.Data1D |
---|
| 356 | :param background: Background value. The data will be corrected before processing |
---|
| 357 | :param scale: Scaling factor for I(q). The data will be corrected before processing |
---|
[75047cf] | 358 | """ |
---|
[b6666d4] | 359 | # Background and scale should be private data member if the only way to |
---|
| 360 | # change them are by instantiating a new object. |
---|
| 361 | self._background = background |
---|
| 362 | self._scale = scale |
---|
[75047cf] | 363 | |
---|
[b6666d4] | 364 | # The data should be private |
---|
| 365 | self._data = self._get_data(data) |
---|
[f31ab59] | 366 | |
---|
[b6666d4] | 367 | # Since there are multiple variants of Q*, you should force the |
---|
| 368 | # user to use the get method and keep Q* a private data member |
---|
| 369 | self._qstar = None |
---|
| 370 | |
---|
| 371 | # You should keep the error on Q* so you can reuse it without |
---|
| 372 | # recomputing the whole thing. |
---|
| 373 | self._qstar_err = 0 |
---|
[75047cf] | 374 | |
---|
[b6666d4] | 375 | # Extrapolation parameters |
---|
| 376 | self._low_extrapolation_npts = 4 |
---|
[59a41066] | 377 | self._low_extrapolation_function = Guinier() |
---|
[4e80ae0] | 378 | self._low_extrapolation_power = None |
---|
[90e5ca1] | 379 | self._low_extrapolation_power_fitted = None |
---|
[ef9ed58] | 380 | |
---|
[b6666d4] | 381 | self._high_extrapolation_npts = 4 |
---|
[59a41066] | 382 | self._high_extrapolation_function = PowerLaw() |
---|
[4e80ae0] | 383 | self._high_extrapolation_power = None |
---|
[90e5ca1] | 384 | self._high_extrapolation_power_fitted = None |
---|
[75047cf] | 385 | |
---|
[2e94cbde] | 386 | # Extrapolation range |
---|
| 387 | self._low_q_limit = Q_MINIMUM |
---|
| 388 | |
---|
[b6666d4] | 389 | def _get_data(self, data): |
---|
[75047cf] | 390 | """ |
---|
[a45622a] | 391 | :note: this function must be call before computing any type |
---|
| 392 | of invariant |
---|
| 393 | |
---|
| 394 | :return: new data = self._scale *data - self._background |
---|
[75047cf] | 395 | """ |
---|
[b6666d4] | 396 | if not issubclass(data.__class__, LoaderData1D): |
---|
| 397 | #Process only data that inherited from DataLoader.Data_info.Data1D |
---|
| 398 | raise ValueError,"Data must be of type DataLoader.Data1D" |
---|
[6d55d81] | 399 | #from copy import deepcopy |
---|
[82703a1] | 400 | new_data = (self._scale * data) - self._background |
---|
[bdd162f] | 401 | |
---|
| 402 | # Check that the vector lengths are equal |
---|
| 403 | assert(len(new_data.x)==len(new_data.y)) |
---|
| 404 | |
---|
| 405 | # Verify that the errors are set correctly |
---|
| 406 | if new_data.dy is None or len(new_data.x) != len(new_data.dy) or \ |
---|
| 407 | (min(new_data.dy)==0 and max(new_data.dy)==0): |
---|
| 408 | new_data.dy = numpy.ones(len(new_data.x)) |
---|
| 409 | |
---|
[82703a1] | 410 | return new_data |
---|
| 411 | |
---|
[c4f52e3] | 412 | def _fit(self, model, qmin=Q_MINIMUM, qmax=Q_MAXIMUM, power=None): |
---|
[75047cf] | 413 | """ |
---|
[a45622a] | 414 | fit data with function using |
---|
| 415 | data = self._get_data() |
---|
| 416 | fx = Functor(data , function) |
---|
| 417 | y = data.y |
---|
| 418 | slope, constant = linalg.lstsq(y,fx) |
---|
| 419 | |
---|
| 420 | :param qmin: data first q value to consider during the fit |
---|
| 421 | :param qmax: data last q value to consider during the fit |
---|
| 422 | :param power : power value to consider for power-law |
---|
| 423 | :param function: the function to use during the fit |
---|
| 424 | |
---|
| 425 | :return a: the scale of the function |
---|
| 426 | :return b: the other parameter of the function for guinier will be radius |
---|
| 427 | for power_law will be the power value |
---|
[ef9ed58] | 428 | """ |
---|
[bdd162f] | 429 | extrapolator = Extrapolator(data=self._data, model=model) |
---|
| 430 | p, dp = extrapolator.fit(power=power, qmin=qmin, qmax=qmax) |
---|
[82703a1] | 431 | |
---|
[bdd162f] | 432 | return model.extract_model_parameters(constant=p[1], slope=p[0], dconstant=dp[1], dslope=dp[0]) |
---|
[ef9ed58] | 433 | |
---|
| 434 | def _get_qstar(self, data): |
---|
[75047cf] | 435 | """ |
---|
[a45622a] | 436 | Compute invariant for pinhole data. |
---|
| 437 | This invariant is given by: :: |
---|
| 438 | |
---|
| 439 | q_star = x0**2 *y0 *dx0 +x1**2 *y1 *dx1 |
---|
| 440 | + ..+ xn**2 *yn *dxn |
---|
| 441 | |
---|
[669aaf9] | 442 | where n >= len(data.x)-1 |
---|
[75047cf] | 443 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
[3bb37ef] | 444 | dx0 = (x1 - x0)/2 |
---|
| 445 | dxn = (xn - xn-1)/2 |
---|
[a45622a] | 446 | |
---|
| 447 | :param data: the data to use to compute invariant. |
---|
| 448 | |
---|
| 449 | :return q_star: invariant value for pinhole data. q_star > 0 |
---|
[75047cf] | 450 | """ |
---|
[ef9ed58] | 451 | if len(data.x) <= 1 or len(data.y) <= 1 or len(data.x)!= len(data.y): |
---|
| 452 | msg = "Length x and y must be equal" |
---|
| 453 | msg += " and greater than 1; got x=%s, y=%s"%(len(data.x), len(data.y)) |
---|
| 454 | raise ValueError, msg |
---|
| 455 | else: |
---|
| 456 | n = len(data.x)- 1 |
---|
| 457 | #compute the first delta q |
---|
[3bb37ef] | 458 | dx0 = (data.x[1] - data.x[0])/2 |
---|
[ef9ed58] | 459 | #compute the last delta q |
---|
[3bb37ef] | 460 | dxn = (data.x[n] - data.x[n-1])/2 |
---|
[ef9ed58] | 461 | sum = 0 |
---|
| 462 | sum += data.x[0] * data.x[0] * data.y[0] * dx0 |
---|
| 463 | sum += data.x[n] * data.x[n] * data.y[n] * dxn |
---|
| 464 | |
---|
| 465 | if len(data.x) == 2: |
---|
| 466 | return sum |
---|
| 467 | else: |
---|
| 468 | #iterate between for element different from the first and the last |
---|
| 469 | for i in xrange(1, n-1): |
---|
| 470 | dxi = (data.x[i+1] - data.x[i-1])/2 |
---|
| 471 | sum += data.x[i] * data.x[i] * data.y[i] * dxi |
---|
| 472 | return sum |
---|
| 473 | |
---|
[bdd162f] | 474 | def _get_qstar_uncertainty(self, data): |
---|
[75047cf] | 475 | """ |
---|
[a45622a] | 476 | Compute invariant uncertainty with with pinhole data. |
---|
| 477 | This uncertainty is given as follow: :: |
---|
| 478 | |
---|
| 479 | dq_star = math.sqrt[(x0**2*(dy0)*dx0)**2 + |
---|
| 480 | (x1**2 *(dy1)*dx1)**2 + ..+ (xn**2 *(dyn)*dxn)**2 ] |
---|
| 481 | where n >= len(data.x)-1 |
---|
| 482 | dxi = 1/2*(xi+1 - xi) + (xi - xi-1) |
---|
| 483 | dx0 = (x1 - x0)/2 |
---|
| 484 | dxn = (xn - xn-1)/2 |
---|
| 485 | dyn: error on dy |
---|
| 486 | |
---|
| 487 | :param data: |
---|
| 488 | :note: if data doesn't contain dy assume dy= math.sqrt(data.y) |
---|
[bdd162f] | 489 | """ |
---|
[ef9ed58] | 490 | if len(data.x) <= 1 or len(data.y) <= 1 or \ |
---|
[bdd162f] | 491 | len(data.x) != len(data.y) or \ |
---|
| 492 | (data.dy is not None and (len(data.dy) != len(data.y))): |
---|
[ef9ed58] | 493 | msg = "Length of data.x and data.y must be equal" |
---|
| 494 | msg += " and greater than 1; got x=%s, y=%s"%(len(data.x), |
---|
| 495 | len(data.y)) |
---|
| 496 | raise ValueError, msg |
---|
| 497 | else: |
---|
| 498 | #Create error for data without dy error |
---|
[bdd162f] | 499 | if data.dy is None: |
---|
[ef9ed58] | 500 | dy = math.sqrt(y) |
---|
| 501 | else: |
---|
| 502 | dy = data.dy |
---|
| 503 | |
---|
| 504 | n = len(data.x) - 1 |
---|
| 505 | #compute the first delta |
---|
[3bb37ef] | 506 | dx0 = (data.x[1] - data.x[0])/2 |
---|
[ef9ed58] | 507 | #compute the last delta |
---|
[3bb37ef] | 508 | dxn= (data.x[n] - data.x[n-1])/2 |
---|
[ef9ed58] | 509 | sum = 0 |
---|
| 510 | sum += (data.x[0] * data.x[0] * dy[0] * dx0)**2 |
---|
| 511 | sum += (data.x[n] * data.x[n] * dy[n] * dxn)**2 |
---|
| 512 | if len(data.x) == 2: |
---|
| 513 | return math.sqrt(sum) |
---|
| 514 | else: |
---|
| 515 | #iterate between for element different from the first and the last |
---|
| 516 | for i in xrange(1, n-1): |
---|
| 517 | dxi = (data.x[i+1] - data.x[i-1])/2 |
---|
| 518 | sum += (data.x[i] * data.x[i] * dy[i] * dxi)**2 |
---|
| 519 | return math.sqrt(sum) |
---|
[b6666d4] | 520 | |
---|
[aafa962] | 521 | def _get_extrapolated_data(self, model, npts=INTEGRATION_NSTEPS, |
---|
| 522 | q_start=Q_MINIMUM, q_end=Q_MAXIMUM): |
---|
| 523 | """ |
---|
[a45622a] | 524 | :return: extrapolate data create from data |
---|
[aafa962] | 525 | """ |
---|
| 526 | #create new Data1D to compute the invariant |
---|
| 527 | q = numpy.linspace(start=q_start, |
---|
[bdd162f] | 528 | stop=q_end, |
---|
| 529 | num=npts, |
---|
| 530 | endpoint=True) |
---|
[aafa962] | 531 | iq = model.evaluate_model(q) |
---|
[bdd162f] | 532 | diq = model.evaluate_model_errors(q) |
---|
[aafa962] | 533 | |
---|
[bdd162f] | 534 | result_data = LoaderData1D(x=q, y=iq, dy=diq) |
---|
[aafa962] | 535 | return result_data |
---|
[76c1727] | 536 | |
---|
[6d55d81] | 537 | def get_data(self): |
---|
| 538 | """ |
---|
[a45622a] | 539 | :return: self._data |
---|
[6d55d81] | 540 | """ |
---|
| 541 | return self._data |
---|
| 542 | |
---|
[90e5ca1] | 543 | def get_extrapolation_power(self, range='high'): |
---|
| 544 | """ |
---|
[a45622a] | 545 | :return: the fitted power for power law function for a given extrapolation range |
---|
[90e5ca1] | 546 | """ |
---|
| 547 | if range == 'low': |
---|
| 548 | return self._low_extrapolation_power_fitted |
---|
| 549 | return self._high_extrapolation_power_fitted |
---|
| 550 | |
---|
[bdd162f] | 551 | def get_qstar_low(self): |
---|
[75047cf] | 552 | """ |
---|
[a45622a] | 553 | Compute the invariant for extrapolated data at low q range. |
---|
| 554 | |
---|
| 555 | Implementation: |
---|
| 556 | data = self._get_extra_data_low() |
---|
| 557 | return self._get_qstar() |
---|
[b6666d4] | 558 | |
---|
[a45622a] | 559 | :return q_star: the invariant for data extrapolated at low q. |
---|
[75047cf] | 560 | """ |
---|
[aafa962] | 561 | # Data boundaries for fitting |
---|
[ef9ed58] | 562 | qmin = self._data.x[0] |
---|
[437a9f0] | 563 | qmax = self._data.x[self._low_extrapolation_npts - 1] |
---|
[aafa962] | 564 | |
---|
[2a11d09] | 565 | # Extrapolate the low-Q data |
---|
[c4f52e3] | 566 | p, dp = self._fit(model=self._low_extrapolation_function, |
---|
| 567 | qmin=qmin, |
---|
| 568 | qmax=qmax, |
---|
| 569 | power=self._low_extrapolation_power) |
---|
| 570 | self._low_extrapolation_power_fitted = p[0] |
---|
[bdd162f] | 571 | |
---|
| 572 | # Distribution starting point |
---|
[2e94cbde] | 573 | self._low_q_limit = Q_MINIMUM |
---|
[3bb37ef] | 574 | if Q_MINIMUM >= qmin: |
---|
[2e94cbde] | 575 | self._low_q_limit = qmin/10 |
---|
[82703a1] | 576 | |
---|
[bdd162f] | 577 | data = self._get_extrapolated_data(model=self._low_extrapolation_function, |
---|
[aafa962] | 578 | npts=INTEGRATION_NSTEPS, |
---|
[2e94cbde] | 579 | q_start=self._low_q_limit, q_end=qmin) |
---|
[bdd162f] | 580 | |
---|
| 581 | # Systematic error |
---|
| 582 | # If we have smearing, the shape of the I(q) distribution at low Q will |
---|
| 583 | # may not be a Guinier or simple power law. The following is a conservative |
---|
| 584 | # estimation for the systematic error. |
---|
[2e94cbde] | 585 | err = qmin*qmin*math.fabs((qmin-self._low_q_limit)*(data.y[0] - data.y[INTEGRATION_NSTEPS-1])) |
---|
[bdd162f] | 586 | return self._get_qstar(data), self._get_qstar_uncertainty(data)+err |
---|
| 587 | |
---|
| 588 | def get_qstar_high(self): |
---|
[75047cf] | 589 | """ |
---|
[a45622a] | 590 | Compute the invariant for extrapolated data at high q range. |
---|
| 591 | |
---|
| 592 | Implementation: |
---|
| 593 | data = self._get_extra_data_high() |
---|
| 594 | return self._get_qstar() |
---|
[75047cf] | 595 | |
---|
[a45622a] | 596 | :return q_star: the invariant for data extrapolated at high q. |
---|
[75047cf] | 597 | """ |
---|
[82703a1] | 598 | # Data boundaries for fitting |
---|
[ef9ed58] | 599 | x_len = len(self._data.x) - 1 |
---|
[82703a1] | 600 | qmin = self._data.x[x_len - (self._high_extrapolation_npts - 1)] |
---|
[ef9ed58] | 601 | qmax = self._data.x[x_len] |
---|
| 602 | |
---|
[59a41066] | 603 | # fit the data with a model to get the appropriate parameters |
---|
[c4f52e3] | 604 | p, dp = self._fit(model=self._high_extrapolation_function, |
---|
| 605 | qmin=qmin, |
---|
| 606 | qmax=qmax, |
---|
| 607 | power=self._high_extrapolation_power) |
---|
| 608 | self._high_extrapolation_power_fitted = p[0] |
---|
[aafa962] | 609 | |
---|
[ef9ed58] | 610 | #create new Data1D to compute the invariant |
---|
[bdd162f] | 611 | data = self._get_extrapolated_data(model=self._high_extrapolation_function, |
---|
| 612 | npts=INTEGRATION_NSTEPS, |
---|
[2e94cbde] | 613 | q_start=qmax, q_end=Q_MAXIMUM) |
---|
[76c1727] | 614 | |
---|
[bdd162f] | 615 | return self._get_qstar(data), self._get_qstar_uncertainty(data) |
---|
[76c1727] | 616 | |
---|
[c75a8ed] | 617 | def get_extra_data_low(self, npts_in=None, q_start=None, npts=20): |
---|
[2e94cbde] | 618 | """ |
---|
[a45622a] | 619 | Returns the extrapolated data used for the loew-Q invariant calculation. |
---|
| 620 | By default, the distribution will cover the data points used for the |
---|
| 621 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
| 622 | By default, the maximum q-value of the distribution will be |
---|
| 623 | the minimum q-value used when extrapolating for the purpose of the |
---|
| 624 | invariant calculation. |
---|
| 625 | |
---|
| 626 | :param npts_in: number of data points for which the extrapolated data overlap |
---|
| 627 | :param q_start: is the minimum value to uses for extrapolated data |
---|
| 628 | :param npts: the number of points in the extrapolated distribution |
---|
[1702180] | 629 | |
---|
[76c1727] | 630 | """ |
---|
[2e94cbde] | 631 | # Get extrapolation range |
---|
| 632 | if q_start is None: |
---|
| 633 | q_start = self._low_q_limit |
---|
[bdd162f] | 634 | |
---|
[2e94cbde] | 635 | if npts_in is None: |
---|
[76c1727] | 636 | npts_in = self._low_extrapolation_npts |
---|
[2e94cbde] | 637 | q_end = self._data.x[max(0, npts_in-1)] |
---|
[76c1727] | 638 | |
---|
[2e94cbde] | 639 | if q_start >= q_end: |
---|
| 640 | return numpy.zeros(0), numpy.zeros(0) |
---|
| 641 | |
---|
| 642 | return self._get_extrapolated_data(model=self._low_extrapolation_function, |
---|
[c75a8ed] | 643 | npts=npts, |
---|
[2e94cbde] | 644 | q_start=q_start, q_end=q_end) |
---|
[76c1727] | 645 | |
---|
[2e94cbde] | 646 | def get_extra_data_high(self, npts_in=None, q_end=Q_MAXIMUM, npts=20): |
---|
| 647 | """ |
---|
[a45622a] | 648 | Returns the extrapolated data used for the high-Q invariant calculation. |
---|
| 649 | By default, the distribution will cover the data points used for the |
---|
| 650 | extrapolation. The number of overlap points is a parameter (npts_in). |
---|
| 651 | By default, the maximum q-value of the distribution will be Q_MAXIMUM, |
---|
| 652 | the maximum q-value used when extrapolating for the purpose of the |
---|
| 653 | invariant calculation. |
---|
| 654 | |
---|
| 655 | :param npts_in: number of data points for which the extrapolated data overlap |
---|
| 656 | :param q_end: is the maximum value to uses for extrapolated data |
---|
| 657 | :param npts: the number of points in the extrapolated distribution |
---|
[76c1727] | 658 | """ |
---|
[2e94cbde] | 659 | # Get extrapolation range |
---|
| 660 | if npts_in is None: |
---|
[76c1727] | 661 | npts_in = self._high_extrapolation_npts |
---|
[c75a8ed] | 662 | _npts = len(self._data.x) |
---|
| 663 | q_start = self._data.x[min(_npts, _npts-npts_in)] |
---|
[76c1727] | 664 | |
---|
[2e94cbde] | 665 | if q_start >= q_end: |
---|
| 666 | return numpy.zeros(0), numpy.zeros(0) |
---|
| 667 | |
---|
| 668 | return self._get_extrapolated_data(model=self._high_extrapolation_function, |
---|
| 669 | npts=npts, |
---|
| 670 | q_start=q_start, q_end=q_end) |
---|
[4e80ae0] | 671 | |
---|
| 672 | def set_extrapolation(self, range, npts=4, function=None, power=None): |
---|
| 673 | """ |
---|
[a45622a] | 674 | Set the extrapolation parameters for the high or low Q-range. |
---|
| 675 | Note that this does not turn extrapolation on or off. |
---|
| 676 | |
---|
| 677 | :param range: a keyword set the type of extrapolation . type string |
---|
| 678 | :param npts: the numbers of q points of data to consider for extrapolation |
---|
| 679 | :param function: a keyword to select the function to use for extrapolation. |
---|
| 680 | of type string. |
---|
| 681 | :param power: an power to apply power_low function |
---|
[4e80ae0] | 682 | |
---|
| 683 | """ |
---|
| 684 | range = range.lower() |
---|
| 685 | if range not in ['high', 'low']: |
---|
| 686 | raise ValueError, "Extrapolation range should be 'high' or 'low'" |
---|
| 687 | function = function.lower() |
---|
| 688 | if function not in ['power_law', 'guinier']: |
---|
| 689 | raise ValueError, "Extrapolation function should be 'guinier' or 'power_law'" |
---|
| 690 | |
---|
| 691 | if range == 'high': |
---|
| 692 | if function != 'power_law': |
---|
| 693 | raise ValueError, "Extrapolation only allows a power law at high Q" |
---|
| 694 | self._high_extrapolation_npts = npts |
---|
| 695 | self._high_extrapolation_power = power |
---|
[90e5ca1] | 696 | self._high_extrapolation_power_fitted = power |
---|
[4e80ae0] | 697 | else: |
---|
| 698 | if function == 'power_law': |
---|
[59a41066] | 699 | self._low_extrapolation_function = PowerLaw() |
---|
[4e80ae0] | 700 | else: |
---|
[59a41066] | 701 | self._low_extrapolation_function = Guinier() |
---|
[4e80ae0] | 702 | self._low_extrapolation_npts = npts |
---|
| 703 | self._low_extrapolation_power = power |
---|
[90e5ca1] | 704 | self._low_extrapolation_power_fitted = power |
---|
[4e80ae0] | 705 | |
---|
| 706 | def get_qstar(self, extrapolation=None): |
---|
| 707 | """ |
---|
[a45622a] | 708 | Compute the invariant of the local copy of data. |
---|
| 709 | |
---|
| 710 | :param extrapolation: string to apply optional extrapolation |
---|
[4e80ae0] | 711 | |
---|
[a45622a] | 712 | :return q_star: invariant of the data within data's q range |
---|
| 713 | |
---|
| 714 | :warning: When using setting data to Data1D , the user is responsible of |
---|
[4e80ae0] | 715 | checking that the scale and the background are properly apply to the data |
---|
[a45622a] | 716 | |
---|
[4e80ae0] | 717 | """ |
---|
[bdd162f] | 718 | self._qstar = self._get_qstar(self._data) |
---|
| 719 | self._qstar_err = self._get_qstar_uncertainty(self._data) |
---|
[4e80ae0] | 720 | |
---|
| 721 | if extrapolation is None: |
---|
| 722 | return self._qstar |
---|
[bdd162f] | 723 | |
---|
| 724 | # Compute invariant plus invariant of extrapolated data |
---|
[4e80ae0] | 725 | extrapolation = extrapolation.lower() |
---|
| 726 | if extrapolation == "low": |
---|
[bdd162f] | 727 | qs_low, dqs_low = self.get_qstar_low() |
---|
| 728 | qs_hi, dqs_hi = 0, 0 |
---|
| 729 | |
---|
[4e80ae0] | 730 | elif extrapolation == "high": |
---|
[bdd162f] | 731 | qs_low, dqs_low = 0, 0 |
---|
| 732 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
| 733 | |
---|
[4e80ae0] | 734 | elif extrapolation == "both": |
---|
[bdd162f] | 735 | qs_low, dqs_low = self.get_qstar_low() |
---|
| 736 | qs_hi, dqs_hi = self.get_qstar_high() |
---|
| 737 | |
---|
| 738 | self._qstar += qs_low + qs_hi |
---|
| 739 | self._qstar_err = math.sqrt(self._qstar_err*self._qstar_err \ |
---|
| 740 | + dqs_low*dqs_low + dqs_hi*dqs_hi) |
---|
| 741 | |
---|
| 742 | return self._qstar |
---|
[4e80ae0] | 743 | |
---|
[bdd162f] | 744 | def get_surface(self, contrast, porod_const, extrapolation=None): |
---|
[4e80ae0] | 745 | """ |
---|
[a45622a] | 746 | Compute the specific surface from the data. |
---|
| 747 | |
---|
| 748 | Implementation:: |
---|
| 749 | |
---|
| 750 | V = self.get_volume_fraction(contrast, extrapolation) |
---|
| 751 | |
---|
| 752 | Compute the surface given by: |
---|
| 753 | surface = (2*pi *V(1- V)*porod_const)/ q_star |
---|
| 754 | |
---|
| 755 | :param contrast: contrast value to compute the volume |
---|
| 756 | :param porod_const: Porod constant to compute the surface |
---|
| 757 | :param extrapolation: string to apply optional extrapolation |
---|
[4e80ae0] | 758 | |
---|
[a45622a] | 759 | :return: specific surface |
---|
[4e80ae0] | 760 | """ |
---|
| 761 | # Compute the volume |
---|
[bdd162f] | 762 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
[4e80ae0] | 763 | return 2 * math.pi * volume *(1 - volume) * float(porod_const)/self._qstar |
---|
| 764 | |
---|
[bdd162f] | 765 | def get_volume_fraction(self, contrast, extrapolation=None): |
---|
[4e80ae0] | 766 | """ |
---|
[a45622a] | 767 | Compute volume fraction is deduced as follow: :: |
---|
| 768 | |
---|
[4e80ae0] | 769 | q_star = 2*(pi*contrast)**2* volume( 1- volume) |
---|
| 770 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
| 771 | we get 2 values of volume: |
---|
| 772 | with 1 - 4 * k >= 0 |
---|
| 773 | volume1 = (1- sqrt(1- 4*k))/2 |
---|
| 774 | volume2 = (1+ sqrt(1- 4*k))/2 |
---|
| 775 | |
---|
| 776 | q_star: the invariant value included extrapolation is applied |
---|
| 777 | unit 1/A^(3)*1/cm |
---|
| 778 | q_star = self.get_qstar() |
---|
| 779 | |
---|
[bdd162f] | 780 | the result returned will be 0 <= volume <= 1 |
---|
[a45622a] | 781 | |
---|
| 782 | :param contrast: contrast value provides by the user of type float. |
---|
| 783 | contrast unit is 1/A^(2)= 10^(16)cm^(2) |
---|
| 784 | :param extrapolation: string to apply optional extrapolation |
---|
| 785 | |
---|
| 786 | :return: volume fraction |
---|
| 787 | |
---|
| 788 | :note: volume fraction must have no unit |
---|
[4e80ae0] | 789 | """ |
---|
[bdd162f] | 790 | if contrast <= 0: |
---|
| 791 | raise ValueError, "The contrast parameter must be greater than zero" |
---|
[4e80ae0] | 792 | |
---|
[bdd162f] | 793 | # Make sure Q star is up to date |
---|
| 794 | self.get_qstar(extrapolation) |
---|
[4e80ae0] | 795 | |
---|
[bdd162f] | 796 | if self._qstar <= 0: |
---|
| 797 | raise RuntimeError, "Invalid invariant: Invariant Q* must be greater than zero" |
---|
[4e80ae0] | 798 | |
---|
| 799 | # Compute intermediate constant |
---|
| 800 | k = 1.e-8 * self._qstar/(2 * (math.pi * math.fabs(float(contrast)))**2) |
---|
[bdd162f] | 801 | # Check discriminant value |
---|
[4e80ae0] | 802 | discrim = 1 - 4 * k |
---|
| 803 | |
---|
| 804 | # Compute volume fraction |
---|
| 805 | if discrim < 0: |
---|
[bdd162f] | 806 | raise RuntimeError, "Could not compute the volume fraction: negative discriminant" |
---|
[4e80ae0] | 807 | elif discrim == 0: |
---|
| 808 | return 1/2 |
---|
| 809 | else: |
---|
| 810 | volume1 = 0.5 * (1 - math.sqrt(discrim)) |
---|
| 811 | volume2 = 0.5 * (1 + math.sqrt(discrim)) |
---|
| 812 | |
---|
| 813 | if 0 <= volume1 and volume1 <= 1: |
---|
| 814 | return volume1 |
---|
| 815 | elif 0 <= volume2 and volume2 <= 1: |
---|
| 816 | return volume2 |
---|
[bdd162f] | 817 | raise RuntimeError, "Could not compute the volume fraction: inconsistent results" |
---|
[ef9ed58] | 818 | |
---|
| 819 | def get_qstar_with_error(self, extrapolation=None): |
---|
[75047cf] | 820 | """ |
---|
[a45622a] | 821 | Compute the invariant uncertainty. |
---|
| 822 | This uncertainty computation depends on whether or not the data is |
---|
| 823 | smeared. |
---|
| 824 | |
---|
| 825 | :param extrapolation: string to apply optional extrapolation |
---|
| 826 | |
---|
| 827 | :return: invariant, the invariant uncertainty |
---|
[bdd162f] | 828 | """ |
---|
| 829 | self.get_qstar(extrapolation) |
---|
[ef9ed58] | 830 | return self._qstar, self._qstar_err |
---|
| 831 | |
---|
[bdd162f] | 832 | def get_volume_fraction_with_error(self, contrast, extrapolation=None): |
---|
[75047cf] | 833 | """ |
---|
[a45622a] | 834 | Compute uncertainty on volume value as well as the volume fraction |
---|
| 835 | This uncertainty is given by the following equation: :: |
---|
| 836 | |
---|
[75047cf] | 837 | dV = 0.5 * (4*k* dq_star) /(2* math.sqrt(1-k* q_star)) |
---|
| 838 | |
---|
[437a9f0] | 839 | for k = 10^(-8)*q_star/(2*(pi*|contrast|)**2) |
---|
[2cce133] | 840 | |
---|
[75047cf] | 841 | q_star: the invariant value including extrapolated value if existing |
---|
| 842 | dq_star: the invariant uncertainty |
---|
| 843 | dV: the volume uncertainty |
---|
[a45622a] | 844 | |
---|
| 845 | The uncertainty will be set to -1 if it can't be computed. |
---|
| 846 | |
---|
| 847 | :param contrast: contrast value |
---|
| 848 | :param extrapolation: string to apply optional extrapolation |
---|
| 849 | |
---|
| 850 | :return: V, dV = volume fraction, error on volume fraction |
---|
[75047cf] | 851 | """ |
---|
[bdd162f] | 852 | volume = self.get_volume_fraction(contrast, extrapolation) |
---|
[75047cf] | 853 | |
---|
[bdd162f] | 854 | # Compute error |
---|
[437a9f0] | 855 | k = 1.e-8 * self._qstar /(2 * (math.pi* math.fabs(float(contrast)))**2) |
---|
[bdd162f] | 856 | # Check value inside the sqrt function |
---|
[ef9ed58] | 857 | value = 1 - k * self._qstar |
---|
[bad9ae2] | 858 | if (value) <= 0: |
---|
[bdd162f] | 859 | uncertainty = -1 |
---|
[ef9ed58] | 860 | # Compute uncertainty |
---|
[bdd162f] | 861 | uncertainty = math.fabs((0.5 * 4 * k * self._qstar_err)/(2 * math.sqrt(1 - k * self._qstar))) |
---|
[ef9ed58] | 862 | |
---|
[bdd162f] | 863 | return volume, uncertainty |
---|
[ef9ed58] | 864 | |
---|
[bdd162f] | 865 | def get_surface_with_error(self, contrast, porod_const, extrapolation=None): |
---|
[75047cf] | 866 | """ |
---|
[a45622a] | 867 | Compute uncertainty of the surface value as well as the surface value. |
---|
| 868 | The uncertainty is given as follow: :: |
---|
| 869 | |
---|
[75047cf] | 870 | dS = porod_const *2*pi[( dV -2*V*dV)/q_star |
---|
| 871 | + dq_star(v-v**2) |
---|
| 872 | |
---|
[bdd162f] | 873 | q_star: the invariant value |
---|
[75047cf] | 874 | dq_star: the invariant uncertainty |
---|
| 875 | V: the volume fraction value |
---|
| 876 | dV: the volume uncertainty |
---|
[a45622a] | 877 | |
---|
| 878 | :param contrast: contrast value |
---|
| 879 | :param porod_const: porod constant value |
---|
| 880 | :param extrapolation: string to apply optional extrapolation |
---|
| 881 | |
---|
| 882 | :return S, dS: the surface, with its uncertainty |
---|
[75047cf] | 883 | """ |
---|
[bdd162f] | 884 | # We get the volume fraction, with error |
---|
| 885 | # get_volume_fraction_with_error calls get_volume_fraction |
---|
| 886 | # get_volume_fraction calls get_qstar |
---|
| 887 | # which computes Qstar and dQstar |
---|
| 888 | v, dv = self.get_volume_fraction_with_error(contrast, extrapolation) |
---|
| 889 | |
---|
[c75a8ed] | 890 | s = self.get_surface(contrast=contrast, porod_const=porod_const, |
---|
| 891 | extrapolation=extrapolation) |
---|
[ef9ed58] | 892 | ds = porod_const * 2 * math.pi * (( dv - 2 * v * dv)/ self._qstar\ |
---|
| 893 | + self._qstar_err * ( v - v**2)) |
---|
[bdd162f] | 894 | |
---|
[ef9ed58] | 895 | return s, ds |
---|