[d00f8ff] | 1 | """ |
---|
| 2 | Unit tests for data manipulations |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | import unittest |
---|
| 7 | import numpy, math |
---|
| 8 | from DataLoader.loader import Loader |
---|
| 9 | from DataLoader.data_info import Data1D, Data2D |
---|
[4fe4394] | 10 | from DataLoader.qsmearing import SlitSmearer, QSmearer, smear_selection |
---|
[cd2ced80] | 11 | from sans.models.SphereModel import SphereModel |
---|
[d00f8ff] | 12 | import os.path |
---|
| 13 | |
---|
| 14 | class smear_tests(unittest.TestCase): |
---|
| 15 | |
---|
| 16 | def setUp(self): |
---|
| 17 | self.data = Loader().load("cansas1d_slit.xml") |
---|
| 18 | |
---|
| 19 | x = 0.001*numpy.arange(1,11) |
---|
| 20 | y = 12.0-numpy.arange(1,11) |
---|
| 21 | dxl = 0.00*numpy.ones(10) |
---|
| 22 | dxw = 0.00*numpy.ones(10) |
---|
[4fe4394] | 23 | dx = 0.00*numpy.ones(10) |
---|
[d00f8ff] | 24 | |
---|
[4fe4394] | 25 | self.data.dx = dx |
---|
[d00f8ff] | 26 | self.data.x = x |
---|
| 27 | self.data.y = y |
---|
| 28 | self.data.dxl = dxl |
---|
| 29 | self.data.dxw = dxw |
---|
| 30 | |
---|
| 31 | def test_slit(self): |
---|
| 32 | """ |
---|
| 33 | Test identity smearing |
---|
| 34 | """ |
---|
| 35 | # Create smearer for our data |
---|
| 36 | s = SlitSmearer(self.data) |
---|
| 37 | |
---|
| 38 | input = 12.0-numpy.arange(1,11) |
---|
| 39 | output = s(input) |
---|
| 40 | for i in range(len(input)): |
---|
| 41 | self.assertEquals(input[i], output[i]) |
---|
| 42 | |
---|
| 43 | def test_slit2(self): |
---|
| 44 | """ |
---|
| 45 | Test basic smearing |
---|
| 46 | """ |
---|
| 47 | dxl = 0.005*numpy.ones(10) |
---|
| 48 | dxw = 0.0*numpy.ones(10) |
---|
| 49 | self.data.dxl = dxl |
---|
| 50 | self.data.dxw = dxw |
---|
| 51 | # Create smearer for our data |
---|
| 52 | s = SlitSmearer(self.data) |
---|
| 53 | |
---|
| 54 | input = 12.0-numpy.arange(1,11) |
---|
| 55 | output = s(input) |
---|
[cd2ced80] | 56 | # The following commented line was the correct output for even bins |
---|
| 57 | # [see smearer.cpp for details] |
---|
| 58 | #answer = [ 9.666, 9.056, 8.329, 7.494, 6.642, 5.721, 4.774, \ |
---|
| 59 | # 3.824, 2.871, 2. ] |
---|
| 60 | # The following answer was from numerical weighting algorithm. |
---|
| 61 | #answer = [ 9.2302, 8.6806, 7.9533, 7.1673, 6.2889, 5.4, \ |
---|
| 62 | # 4.5028, 3.5744, 2.6083, 2. ] |
---|
| 63 | # For the new analytical algorithm, the small difference between |
---|
| 64 | #these two could be from the first edge of the q bin size. |
---|
| 65 | answer = [ 9.0618, 8.64018, 8.11868, 7.13916, 6.15285, 5.55556, \ |
---|
| 66 | 4.55842, 3.56061, 2.56235, 2. ] |
---|
[d00f8ff] | 67 | for i in range(len(input)): |
---|
[a3f8d58] | 68 | self.assertAlmostEqual(answer[i], output[i], 2) |
---|
[d00f8ff] | 69 | |
---|
| 70 | def test_q(self): |
---|
| 71 | """ |
---|
| 72 | Test identity resolution smearing |
---|
| 73 | """ |
---|
| 74 | # Create smearer for our data |
---|
| 75 | s = QSmearer(self.data) |
---|
| 76 | |
---|
| 77 | input = 12.0-numpy.arange(1,11) |
---|
| 78 | output = s(input) |
---|
| 79 | for i in range(len(input)): |
---|
[a3f8d58] | 80 | self.assertAlmostEquals(input[i], output[i], 5) |
---|
[d00f8ff] | 81 | |
---|
| 82 | def test_q2(self): |
---|
| 83 | """ |
---|
| 84 | Test basic smearing |
---|
| 85 | """ |
---|
| 86 | dx = 0.001*numpy.ones(10) |
---|
| 87 | self.data.dx = dx |
---|
| 88 | |
---|
| 89 | # Create smearer for our data |
---|
| 90 | s = QSmearer(self.data) |
---|
| 91 | |
---|
| 92 | input = 12.0-numpy.arange(1,11) |
---|
| 93 | output = s(input) |
---|
| 94 | |
---|
| 95 | answer = [ 10.44785079, 9.84991299, 8.98101708, |
---|
| 96 | 7.99906585, 6.99998311, 6.00001689, |
---|
| 97 | 5.00093415, 4.01898292, 3.15008701, 2.55214921] |
---|
| 98 | for i in range(len(input)): |
---|
[cd2ced80] | 99 | self.assertAlmostEqual(answer[i], output[i], 2) |
---|
| 100 | |
---|
| 101 | class smear_slit_h_w_tests(unittest.TestCase): |
---|
| 102 | |
---|
| 103 | def setUp(self): |
---|
| 104 | self.data = Loader().load("1000A_sphere_sm.xml") |
---|
| 105 | self.model = SphereModel() |
---|
| 106 | # The answer could be improved by developing better algorithm. |
---|
| 107 | self.answer1 = Loader().load("slit_1000A_sphere_sm_w_0_0002.txt") |
---|
| 108 | self.answer2 = Loader().load("slit_1000A_sphere_sm_h.txt") |
---|
| 109 | self.answer3 = Loader().load("slit_1000A_sphere_sm_w_0_0001.txt") |
---|
| 110 | # Get inputs |
---|
| 111 | self.model.params['scale'] = 0.05 |
---|
| 112 | self.model.params['background'] = 0.01 |
---|
| 113 | self.model.params['radius'] = 10000.0 |
---|
| 114 | self.model.params['sldSolv'] = 6.3e-006 |
---|
| 115 | self.model.params['sldSph'] = 3.4e-006 |
---|
| 116 | |
---|
| 117 | def test_slit_h_w(self): |
---|
| 118 | """ |
---|
| 119 | Test identity slit smearing w/ h=0.117 w = 0.002 |
---|
| 120 | """ |
---|
| 121 | # Set params and dQl |
---|
| 122 | data = self.data |
---|
| 123 | data.dxw = 0.0002 * numpy.ones(len(self.data.x)) |
---|
| 124 | data.dxl = 0.117 * numpy.ones(len(self.data.x)) |
---|
| 125 | # Create smearer for our data |
---|
| 126 | s = SlitSmearer(data, self.model) |
---|
| 127 | # Get smear |
---|
| 128 | input = self.model.evalDistribution(data.x) |
---|
| 129 | output = s(input) |
---|
| 130 | # Get pre-calculated values |
---|
| 131 | answer = self.answer1.y |
---|
| 132 | # Now compare |
---|
| 133 | for i in range(len(input)): |
---|
| 134 | self.assertAlmostEqual(answer[i], output[i], 0) |
---|
| 135 | |
---|
| 136 | def test_slit_h(self): |
---|
| 137 | """ |
---|
| 138 | Test identity slit smearing w/ h=0.117 w = 0.0 |
---|
| 139 | """ |
---|
| 140 | # Set params and dQl |
---|
| 141 | data = self.data |
---|
| 142 | data.dxw = 0.0 * numpy.ones(len(self.data.x)) |
---|
| 143 | data.dxl = 0.117 * numpy.ones(len(self.data.x)) |
---|
| 144 | # Create smearer for our data |
---|
| 145 | s = SlitSmearer(data, self.model) |
---|
| 146 | # Get smear |
---|
| 147 | input = self.model.evalDistribution(data.x) |
---|
| 148 | output = s(input) |
---|
| 149 | # Get pre-calculated values |
---|
| 150 | answer = self.answer2.y |
---|
| 151 | # Now compare |
---|
| 152 | for i in range(len(input)): |
---|
| 153 | self.assertAlmostEqual(answer[i], output[i], 0) |
---|
| 154 | |
---|
| 155 | def test_slit_w(self): |
---|
| 156 | """ |
---|
| 157 | Test identity slit smearing w/ h=0.0 w = 0.001 |
---|
| 158 | """ |
---|
| 159 | # Set params and dQl |
---|
| 160 | data = self.data |
---|
| 161 | data.dxw = 0.0001 * numpy.ones(len(self.data.x)) |
---|
| 162 | data.dxl = 0.0 * numpy.ones(len(self.data.x)) |
---|
| 163 | # Create smearer for our data |
---|
| 164 | s = SlitSmearer(data, self.model) |
---|
| 165 | # Get smear |
---|
| 166 | input = self.model.evalDistribution(data.x) |
---|
| 167 | output = s(input) |
---|
| 168 | # Get pre-calculated values |
---|
| 169 | answer = self.answer3.y |
---|
| 170 | # Now compare |
---|
| 171 | for i in range(len(input)): |
---|
| 172 | if i <= 40: |
---|
| 173 | self.assertAlmostEqual(answer[i], output[i], -3) |
---|
| 174 | else: |
---|
| 175 | self.assertAlmostEqual(answer[i], output[i], 0) |
---|
| 176 | |
---|
[d00f8ff] | 177 | if __name__ == '__main__': |
---|
| 178 | unittest.main() |
---|
| 179 | |
---|