[f72333f] | 1 | """ |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | See the license text in license.txt |
---|
| 7 | |
---|
| 8 | copyright 2009, University of Tennessee |
---|
| 9 | """ |
---|
| 10 | ## TODO: Need test,and check Gaussian averaging |
---|
| 11 | import numpy, math,time |
---|
| 12 | ## Singular point |
---|
| 13 | SIGMA_ZERO = 1.0e-010 |
---|
| 14 | ## Limit of how many sigmas to be covered for the Gaussian smearing |
---|
| 15 | # default: 2.5 to cover 98.7% of Gaussian |
---|
| 16 | LIMIT = 2.5 |
---|
| 17 | ## Defaults |
---|
| 18 | R_BIN = {'Xhigh':10.0, 'High':5.0,'Med':5.0,'Low':3.0} |
---|
| 19 | PHI_BIN ={'Xhigh':20.0,'High':12.0,'Med':6.0,'Low':4.0} |
---|
| 20 | |
---|
| 21 | class Smearer2D: |
---|
| 22 | """ |
---|
| 23 | Gaussian Q smearing class for SANS 2d data |
---|
| 24 | """ |
---|
| 25 | |
---|
| 26 | def __init__(self, data=None,model=None,index=None,limit=LIMIT,accuracy='Low'): |
---|
| 27 | """ |
---|
| 28 | Assumption: equally spaced bins of increasing q-values. |
---|
| 29 | |
---|
| 30 | @param data: 2d data used to set the smearing parameters |
---|
| 31 | @param model: model function |
---|
| 32 | @param index: 1d array with len(data) to define the range of the calculation: elements are given as True or False |
---|
| 33 | @param nr: number of bins in dq_r-axis |
---|
| 34 | @param nphi: number of bins in dq_phi-axis |
---|
| 35 | """ |
---|
| 36 | ## data |
---|
| 37 | self.data = data |
---|
| 38 | ## model |
---|
| 39 | self.model = model |
---|
| 40 | ## Accuracy: Higher stands for more sampling points in both directions of r and phi. |
---|
| 41 | self.accuracy = accuracy |
---|
| 42 | ## number of bins in r axis for over-sampling |
---|
| 43 | self.nr = R_BIN |
---|
| 44 | ## number of bins in phi axis for over-sampling |
---|
| 45 | self.nphi = PHI_BIN |
---|
| 46 | ## maximum nsigmas |
---|
| 47 | self.limit = limit |
---|
| 48 | self.index = index |
---|
| 49 | self.smearer = True |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | def get_data(self): |
---|
| 53 | """ |
---|
| 54 | get qx_data, qy_data, dqx_data,dqy_data,and calculate phi_data=arctan(qx_data/qy_data) |
---|
| 55 | """ |
---|
| 56 | if self.data == None or self.data.__class__.__name__ == 'Data1D': |
---|
| 57 | return None |
---|
| 58 | if self.data.dqx_data == None or self.data.dqy_data == None: |
---|
| 59 | return None |
---|
| 60 | self.qx_data = self.data.qx_data[self.index] |
---|
| 61 | self.qy_data = self.data.qy_data[self.index] |
---|
| 62 | self.dqx_data = self.data.dqx_data[self.index] |
---|
| 63 | self.dqy_data = self.data.dqy_data[self.index] |
---|
| 64 | self.phi_data = numpy.arctan(self.qx_data/self.qy_data) |
---|
| 65 | ## Remove singular points if exists |
---|
| 66 | self.dqx_data[self.dqx_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
| 67 | self.dqy_data[self.dqy_data<SIGMA_ZERO]=SIGMA_ZERO |
---|
| 68 | return True |
---|
| 69 | |
---|
| 70 | def set_accuracy(self,accuracy='Low'): |
---|
| 71 | """ |
---|
| 72 | Set accuracy: string |
---|
| 73 | """ |
---|
| 74 | self.accuracy = accuracy |
---|
| 75 | |
---|
| 76 | def set_smearer(self,smearer = True): |
---|
| 77 | """ |
---|
| 78 | Set whether or not smearer will be used |
---|
| 79 | """ |
---|
| 80 | self.smearer = smearer |
---|
| 81 | |
---|
| 82 | def set_data(self,data=None): |
---|
| 83 | """ |
---|
| 84 | Set data: 1d arrays |
---|
| 85 | """ |
---|
| 86 | self.data = data |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | def set_model(self,model=None): |
---|
| 90 | """ |
---|
| 91 | Set model |
---|
| 92 | """ |
---|
| 93 | self.model = model |
---|
| 94 | |
---|
| 95 | def set_index(self,index=None): |
---|
| 96 | """ |
---|
| 97 | Set index: 1d arrays |
---|
| 98 | """ |
---|
| 99 | |
---|
| 100 | self.index = index |
---|
| 101 | |
---|
| 102 | def get_value(self): |
---|
| 103 | """ |
---|
| 104 | Over sampling of r_nbins times phi_nbins, calculate Gaussian weights, then find semared intensity |
---|
| 105 | # For the default vaues, this is equivalent (but speed optimized by a factor of ten)to the following: |
---|
| 106 | ===================================================================================== |
---|
| 107 | ## Remove the singular points if exists |
---|
| 108 | self.dqx_data[self.dqx_data==0]=SIGMA_ZERO |
---|
| 109 | self.dqy_data[self.dqy_data==0]=SIGMA_ZERO |
---|
| 110 | for phi in range(0,4): |
---|
| 111 | for r in range(0,5): |
---|
| 112 | n = (phi)*5+(r) |
---|
| 113 | r = r+0.25 |
---|
| 114 | dphi = phi*2.0*math.pi/4.0 + numpy.arctan(self.qy_data[index_model]/self.qx_data[index_model]) |
---|
| 115 | dq = r*numpy.sqrt( self.dqx_data[index_model]*self.dqx_data[index_model] \ |
---|
| 116 | + self.dqy_data[index_model]*self.dqy_data[index_model] ) |
---|
| 117 | #integrant of r*math.exp(-0.5*r*r) dr at each bins |
---|
| 118 | weight_res[n] = math.exp(-0.5*((r-0.25)*(r-0.25)))-math.exp(-0.5*((r-0.25)*(r-0.25))) |
---|
| 119 | #if phi !=0 and r != 0: |
---|
| 120 | qx_res=numpy.append(qx_res,self.qx_data[index_model]+ dq*math.cos(dphi)) |
---|
| 121 | qy_res=numpy.append(qy_res,self.qy_data[index_model]+ dq*math.sin(dphi)) |
---|
| 122 | ===================================================================================== |
---|
| 123 | """ |
---|
| 124 | valid = self.get_data() |
---|
| 125 | if valid == None: |
---|
| 126 | return valid |
---|
| 127 | if self.smearer == False: |
---|
| 128 | return self.model.evalDistribution([self.qx_data,self.qy_data]) |
---|
| 129 | st = time.time() |
---|
| 130 | nr = self.nr[self.accuracy] |
---|
| 131 | nphi = self.nphi[self.accuracy] |
---|
| 132 | |
---|
| 133 | # data length in the range of self.index |
---|
| 134 | len_data = len(self.qx_data) |
---|
| 135 | len_datay = len(self.qy_data) |
---|
| 136 | |
---|
| 137 | # Number of bins in the dqr direction (polar coordinate of dqx and dqy) |
---|
| 138 | bin_size = self.limit/nr |
---|
| 139 | # Total number of bins = # of bins in dq_r-direction times # of bins in dq_phi-direction |
---|
| 140 | n_bins = nr * nphi |
---|
| 141 | # Mean values of dqr at each bins ,starting from the half of bin size |
---|
| 142 | r = bin_size/2.0+numpy.arange(nr)*bin_size |
---|
| 143 | # mean values of qphi at each bines |
---|
| 144 | phi = numpy.arange(nphi) |
---|
| 145 | dphi = phi*2.0*math.pi/nphi |
---|
| 146 | dphi = dphi.repeat(nr) |
---|
| 147 | ## Transform to polar coordinate and set dphi at each data points ; 1d array |
---|
| 148 | dphi = dphi.repeat(len_data)+numpy.arctan(self.qy_data*self.dqx_data/self.qx_data/self.dqy_data).repeat(n_bins).reshape(len_data,n_bins).transpose().flatten() |
---|
| 149 | ## Find Gaussian weight for each dq bins: The weight depends only on r-direction |
---|
| 150 | weight_res = numpy.exp(-0.5*((r-bin_size/2.0)*(r-bin_size/2.0)))-numpy.exp(-0.5*((r+bin_size/2.0)*(r+bin_size/2.0))) |
---|
| 151 | weight_res = weight_res.repeat(nphi).reshape(nr,nphi).transpose().flatten() |
---|
| 152 | |
---|
| 153 | ## Set dr for all dq bins for averaging |
---|
| 154 | dr = r.repeat(nphi).reshape(nr,nphi).transpose().flatten() |
---|
| 155 | ## Set dqr for all data points |
---|
| 156 | dqx = numpy.outer(dr,self.dqx_data).flatten() |
---|
| 157 | dqy = numpy.outer(dr,self.dqy_data).flatten() |
---|
| 158 | qx = self.qx_data.repeat(n_bins).reshape(len_data,n_bins).transpose().flatten() |
---|
| 159 | qy = self.qy_data.repeat(n_bins).reshape(len_data,n_bins).transpose().flatten() |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | ## Over-sampled qx_data and qy_data. |
---|
| 163 | qx_res = qx+ dqx*numpy.cos(dphi) |
---|
| 164 | qy_res = qy+ dqy*numpy.sin(dphi) |
---|
| 165 | |
---|
| 166 | ## Evaluate all points |
---|
| 167 | val = self.model.evalDistribution([qx_res,qy_res]) |
---|
| 168 | |
---|
| 169 | ## Reshape into 2d array to use numpy weighted averaging |
---|
| 170 | value_res= val.reshape(n_bins,len(self.qx_data)) |
---|
| 171 | |
---|
| 172 | ## Averaging with Gaussian weighting: normalization included. |
---|
| 173 | value =numpy.average(value_res,axis=0,weights=weight_res) |
---|
| 174 | |
---|
| 175 | ## Return the smeared values in the range of self.index |
---|
| 176 | return value |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | if __name__ == '__main__': |
---|
| 180 | ## Test |
---|
| 181 | x = 0.001*numpy.arange(1,11) |
---|
| 182 | dx = numpy.ones(len(x))*0.001 |
---|
| 183 | y = 0.001*numpy.arange(1,11) |
---|
| 184 | dy = numpy.ones(len(x))*0.001 |
---|
| 185 | z = numpy.ones(10) |
---|
| 186 | dz = numpy.sqrt(z) |
---|
| 187 | |
---|
| 188 | from DataLoader import Data2D |
---|
| 189 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 190 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 191 | out = Data2D() |
---|
| 192 | out.data = z |
---|
| 193 | out.qx_data = x |
---|
| 194 | out.qy_data = y |
---|
| 195 | out.dqx_data = dx |
---|
| 196 | out.dqy_data = dy |
---|
| 197 | index = numpy.ones(len(x), dtype = bool) |
---|
| 198 | out.mask = index |
---|
| 199 | from sans.models.Constant import Constant |
---|
| 200 | model = Constant() |
---|
| 201 | |
---|
| 202 | value = Smearer2D(out,model,index).get_value() |
---|
| 203 | ## All data are ones, so the smeared should also be ones. |
---|
| 204 | print "Data length =",len(value), ", Data=",value |
---|
| 205 | |
---|