[0997158f] | 1 | |
---|
| 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2008, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
| 9 | |
---|
[3cd95c8] | 10 | """ |
---|
| 11 | TXT/IGOR 2D Q Map file reader |
---|
| 12 | """ |
---|
| 13 | |
---|
| 14 | |
---|
[a7a5886] | 15 | import os |
---|
| 16 | #import sys |
---|
[3cd95c8] | 17 | import numpy |
---|
[a7a5886] | 18 | import math |
---|
| 19 | #import logging |
---|
[3cd95c8] | 20 | from DataLoader.data_info import Data2D, Detector |
---|
| 21 | |
---|
| 22 | # Look for unit converter |
---|
| 23 | has_converter = True |
---|
| 24 | try: |
---|
| 25 | from data_util.nxsunit import Converter |
---|
| 26 | except: |
---|
| 27 | has_converter = False |
---|
[d2539aa] | 28 | |
---|
| 29 | def check_point(x_point): |
---|
| 30 | """ |
---|
| 31 | check point validity |
---|
| 32 | """ |
---|
| 33 | # set zero for non_floats |
---|
| 34 | try: |
---|
| 35 | return float(x_point) |
---|
| 36 | except: |
---|
| 37 | return 0 |
---|
| 38 | |
---|
[3cd95c8] | 39 | class Reader: |
---|
| 40 | """ Simple data reader for Igor data files """ |
---|
| 41 | ## File type |
---|
| 42 | type_name = "IGOR/DAT 2D Q_map" |
---|
| 43 | ## Wildcards |
---|
| 44 | type = ["IGOR/DAT 2D file in Q_map (*.dat)|*.DAT"] |
---|
| 45 | ## Extension |
---|
| 46 | ext=['.DAT', '.dat'] |
---|
| 47 | |
---|
| 48 | def read(self,filename=None): |
---|
| 49 | """ Read file """ |
---|
| 50 | if not os.path.isfile(filename): |
---|
| 51 | raise ValueError, \ |
---|
| 52 | "Specified file %s is not a regular file" % filename |
---|
[952afaa] | 53 | |
---|
[3cd95c8] | 54 | # Read file |
---|
| 55 | f = open(filename,'r') |
---|
| 56 | buf = f.read() |
---|
[952afaa] | 57 | f.close() |
---|
[3cd95c8] | 58 | # Instantiate data object |
---|
| 59 | output = Data2D() |
---|
| 60 | output.filename = os.path.basename(filename) |
---|
| 61 | detector = Detector() |
---|
| 62 | if len(output.detector)>0: print str(output.detector[0]) |
---|
| 63 | output.detector.append(detector) |
---|
| 64 | |
---|
| 65 | # Get content |
---|
| 66 | dataStarted = False |
---|
| 67 | |
---|
| 68 | ## Defaults |
---|
| 69 | lines = buf.split('\n') |
---|
| 70 | itot = 0 |
---|
| 71 | x = [] |
---|
| 72 | y = [] |
---|
| 73 | |
---|
| 74 | ncounts = 0 |
---|
| 75 | |
---|
| 76 | wavelength = None |
---|
| 77 | distance = None |
---|
| 78 | transmission = None |
---|
| 79 | |
---|
| 80 | pixel_x = None |
---|
| 81 | pixel_y = None |
---|
| 82 | |
---|
| 83 | i_x = 0 |
---|
| 84 | i_y = -1 |
---|
| 85 | pixels = 0 |
---|
| 86 | |
---|
| 87 | isInfo = False |
---|
| 88 | isCenter = False |
---|
| 89 | |
---|
| 90 | data_conv_q = None |
---|
| 91 | data_conv_i = None |
---|
| 92 | |
---|
| 93 | # Set units: This is the unit assumed for Q and I in the data file. |
---|
| 94 | if has_converter == True and output.Q_unit != '1/A': |
---|
| 95 | data_conv_q = Converter('1/A') |
---|
| 96 | # Test it |
---|
| 97 | data_conv_q(1.0, output.Q_unit) |
---|
| 98 | |
---|
| 99 | if has_converter == True and output.I_unit != '1/cm': |
---|
| 100 | data_conv_i = Converter('1/cm') |
---|
| 101 | # Test it |
---|
| 102 | data_conv_i(1.0, output.I_unit) |
---|
| 103 | |
---|
[952afaa] | 104 | |
---|
| 105 | # Remove the last lines before the for loop if the lines are empty |
---|
| 106 | # to calculate the exact number of data points |
---|
| 107 | count = 0 |
---|
| 108 | while (len(lines[len(lines)-(count+1)].lstrip().rstrip()) < 1): |
---|
| 109 | del lines[len(lines)-(count+1)] |
---|
| 110 | count = count + 1 |
---|
| 111 | |
---|
| 112 | #Read Header and find the dimensions of 2D data |
---|
| 113 | line_num = 0 |
---|
[3cd95c8] | 114 | for line in lines: |
---|
[952afaa] | 115 | line_num += 1 |
---|
[3cd95c8] | 116 | ## Reading the header applies only to IGOR/NIST 2D q_map data files |
---|
| 117 | # Find setup info line |
---|
| 118 | if isInfo: |
---|
| 119 | isInfo = False |
---|
| 120 | line_toks = line.split() |
---|
| 121 | # Wavelength in Angstrom |
---|
| 122 | try: |
---|
| 123 | wavelength = float(line_toks[1]) |
---|
| 124 | # Units |
---|
[a7a5886] | 125 | if has_converter == True and \ |
---|
| 126 | output.source.wavelength_unit != 'A': |
---|
[3cd95c8] | 127 | conv = Converter('A') |
---|
[a7a5886] | 128 | wavelength = conv(wavelength, |
---|
| 129 | units=output.source.wavelength_unit) |
---|
[3cd95c8] | 130 | except: |
---|
| 131 | #Not required |
---|
| 132 | pass |
---|
| 133 | # Distance in mm |
---|
| 134 | try: |
---|
| 135 | distance = float(line_toks[3]) |
---|
| 136 | # Units |
---|
[a7a5886] | 137 | if has_converter == True and detector.distance_unit != 'm': |
---|
[3cd95c8] | 138 | conv = Converter('m') |
---|
| 139 | distance = conv(distance, units=detector.distance_unit) |
---|
| 140 | except: |
---|
| 141 | #Not required |
---|
| 142 | pass |
---|
| 143 | |
---|
| 144 | # Distance in meters |
---|
| 145 | try: |
---|
| 146 | transmission = float(line_toks[4]) |
---|
| 147 | except: |
---|
| 148 | #Not required |
---|
| 149 | pass |
---|
| 150 | |
---|
[a7a5886] | 151 | if line.count("LAMBDA") > 0: |
---|
[3cd95c8] | 152 | isInfo = True |
---|
| 153 | |
---|
| 154 | # Find center info line |
---|
| 155 | if isCenter: |
---|
| 156 | isCenter = False |
---|
| 157 | line_toks = line.split() |
---|
| 158 | # Center in bin number |
---|
| 159 | center_x = float(line_toks[0]) |
---|
| 160 | center_y = float(line_toks[1]) |
---|
| 161 | |
---|
[a7a5886] | 162 | if line.count("BCENT") > 0: |
---|
[3cd95c8] | 163 | isCenter = True |
---|
| 164 | |
---|
| 165 | # Find data start |
---|
[a7a5886] | 166 | if line.count("Data columns") or line.count("ASCII data") > 0: |
---|
[3cd95c8] | 167 | dataStarted = True |
---|
| 168 | continue |
---|
| 169 | |
---|
| 170 | ## Read and get data. |
---|
| 171 | if dataStarted == True: |
---|
[952afaa] | 172 | line_toks = line.split() |
---|
[3cd95c8] | 173 | if len(line_toks) == 0: |
---|
| 174 | #empty line |
---|
| 175 | continue |
---|
[952afaa] | 176 | # the number of columns must be stayed same |
---|
| 177 | col_num = len(line_toks) |
---|
| 178 | break |
---|
| 179 | # Make numpy array to remove header lines using index |
---|
| 180 | lines_array = numpy.array(lines) |
---|
| 181 | |
---|
| 182 | # index for lines_array |
---|
| 183 | lines_index = numpy.arange(len(lines)) |
---|
| 184 | |
---|
| 185 | # get the data lines |
---|
[a7a5886] | 186 | data_lines = lines_array[lines_index >= (line_num - 1)] |
---|
[952afaa] | 187 | # Now we get the total number of rows (i.e., # of data points) |
---|
| 188 | row_num = len(data_lines) |
---|
| 189 | # make it as list again to control the separators |
---|
| 190 | data_list = " ".join(data_lines.tolist()) |
---|
| 191 | # split all data to one big list w/" "separator |
---|
| 192 | data_list = data_list.split() |
---|
| 193 | |
---|
[a7a5886] | 194 | # Check if the size is consistent with data, otherwise |
---|
| 195 | #try the tab(\t) separator |
---|
| 196 | # (this may be removed once get the confidence |
---|
| 197 | #the former working all cases). |
---|
[952afaa] | 198 | if len(data_list) != (len(data_lines)) * col_num: |
---|
| 199 | data_list = "\t".join(data_lines.tolist()) |
---|
| 200 | data_list = data_list.split() |
---|
[d2539aa] | 201 | |
---|
[952afaa] | 202 | # Change it(string) into float |
---|
[d2539aa] | 203 | #data_list = map(float,data_list) |
---|
| 204 | data_list1 = map(check_point,data_list) |
---|
| 205 | |
---|
[952afaa] | 206 | # numpy array form |
---|
[d2539aa] | 207 | data_array = numpy.array(data_list1) |
---|
[a7a5886] | 208 | # Redimesion based on the row_num and col_num, |
---|
| 209 | #otherwise raise an error. |
---|
[952afaa] | 210 | try: |
---|
[a7a5886] | 211 | data_point = data_array.reshape(row_num, col_num).transpose() |
---|
[952afaa] | 212 | except: |
---|
[a7a5886] | 213 | msg = "red2d_reader: Can't read this file: Not a proper file format" |
---|
| 214 | raise ValueError, msg |
---|
[952afaa] | 215 | |
---|
| 216 | ## Get the all data: Let's HARDcoding; Todo find better way |
---|
| 217 | # Defaults |
---|
| 218 | dqx_data = numpy.zeros(0) |
---|
| 219 | dqy_data = numpy.zeros(0) |
---|
| 220 | qz_data = numpy.zeros(row_num) |
---|
| 221 | mask = numpy.ones(row_num,dtype=bool) |
---|
| 222 | # Get from the array |
---|
| 223 | qx_data = data_point[0] |
---|
| 224 | qy_data = data_point[1] |
---|
| 225 | data = data_point[2] |
---|
[a7a5886] | 226 | if col_num > 3: qz_data = data_point[3] |
---|
| 227 | if col_num > 4: dqx_data = data_point[4] |
---|
| 228 | if col_num > 5: dqy_data = data_point[5] |
---|
| 229 | if col_num > 6: mask[data_point[6] < 1] = False |
---|
[952afaa] | 230 | q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data+qz_data*qz_data) |
---|
| 231 | |
---|
| 232 | # Extra protection(it is needed for some data files): |
---|
[32e8c78] | 233 | # If all mask elements are False, put all True |
---|
| 234 | if not mask.any(): mask[mask==False] = True |
---|
[d2539aa] | 235 | |
---|
[3cd95c8] | 236 | # Store limits of the image in q space |
---|
| 237 | xmin = numpy.min(qx_data) |
---|
| 238 | xmax = numpy.max(qx_data) |
---|
| 239 | ymin = numpy.min(qy_data) |
---|
| 240 | ymax = numpy.max(qy_data) |
---|
| 241 | |
---|
| 242 | # units |
---|
| 243 | if has_converter == True and output.Q_unit != '1/A': |
---|
| 244 | xmin = data_conv_q(xmin, units=output.Q_unit) |
---|
| 245 | xmax = data_conv_q(xmax, units=output.Q_unit) |
---|
| 246 | ymin = data_conv_q(ymin, units=output.Q_unit) |
---|
| 247 | ymax = data_conv_q(ymax, units=output.Q_unit) |
---|
| 248 | |
---|
| 249 | ## calculate the range of the qx and qy_data |
---|
| 250 | x_size = math.fabs(xmax - xmin) |
---|
| 251 | y_size = math.fabs(ymax - ymin) |
---|
| 252 | |
---|
| 253 | # calculate the number of pixels in the each axes |
---|
| 254 | npix_y = math.floor(math.sqrt(len(data))) |
---|
| 255 | npix_x = math.floor(len(data)/npix_y) |
---|
| 256 | |
---|
| 257 | # calculate the size of bins |
---|
| 258 | xstep = x_size/(npix_x-1) |
---|
| 259 | ystep = y_size/(npix_y-1) |
---|
| 260 | |
---|
| 261 | # store x and y axis bin centers in q space |
---|
| 262 | x_bins = numpy.arange(xmin,xmax+xstep,xstep) |
---|
| 263 | y_bins = numpy.arange(ymin,ymax+ystep,ystep) |
---|
| 264 | |
---|
| 265 | # get the limits of q values |
---|
| 266 | xmin = xmin - xstep/2 |
---|
| 267 | xmax = xmax + xstep/2 |
---|
| 268 | ymin = ymin - ystep/2 |
---|
| 269 | ymax = ymax + ystep/2 |
---|
| 270 | |
---|
| 271 | #Store data in outputs |
---|
| 272 | #TODO: Check the lengths |
---|
| 273 | output.data = data |
---|
| 274 | output.err_data = numpy.sqrt(numpy.abs(data)) |
---|
| 275 | output.qx_data = qx_data |
---|
| 276 | output.qy_data = qy_data |
---|
| 277 | output.q_data = q_data |
---|
| 278 | output.mask = mask |
---|
| 279 | |
---|
| 280 | output.x_bins = x_bins |
---|
| 281 | output.y_bins = y_bins |
---|
| 282 | |
---|
| 283 | output.xmin = xmin |
---|
| 284 | output.xmax = xmax |
---|
| 285 | output.ymin = ymin |
---|
| 286 | output.ymax = ymax |
---|
| 287 | |
---|
| 288 | output.source.wavelength = wavelength |
---|
| 289 | |
---|
| 290 | # Store pixel size in mm |
---|
| 291 | detector.pixel_size.x = pixel_x |
---|
| 292 | detector.pixel_size.y = pixel_y |
---|
| 293 | |
---|
| 294 | # Store the sample to detector distance |
---|
| 295 | detector.distance = distance |
---|
| 296 | |
---|
[59a2dab] | 297 | # optional data: if all of dq data == 0, do not pass to output |
---|
| 298 | if len(dqx_data) == len(qx_data) and dqx_data.any()!=0: |
---|
[a7a5886] | 299 | # if no dqx_data, do not pass dqy_data. |
---|
| 300 | #(1 axis dq is not supported yet). |
---|
[59a2dab] | 301 | if len(dqy_data) == len(qy_data) and dqy_data.any()!=0: |
---|
| 302 | output.dqx_data = dqx_data |
---|
| 303 | output.dqy_data = dqy_data |
---|
[3cd95c8] | 304 | |
---|
| 305 | # Units of axes |
---|
| 306 | if data_conv_q is not None: |
---|
| 307 | output.xaxis("\\rm{Q_{x}}", output.Q_unit) |
---|
| 308 | output.yaxis("\\rm{Q_{y}}", output.Q_unit) |
---|
| 309 | else: |
---|
| 310 | output.xaxis("\\rm{Q_{x}}", 'A^{-1}') |
---|
| 311 | output.yaxis("\\rm{Q_{y}}", 'A^{-1}') |
---|
| 312 | if data_conv_i is not None: |
---|
| 313 | output.zaxis("\\rm{Intensity}", output.I_unit) |
---|
| 314 | else: |
---|
| 315 | output.zaxis("\\rm{Intensity}","cm^{-1}") |
---|
| 316 | |
---|
| 317 | # Store loading process information |
---|
| 318 | output.meta_data['loader'] = self.type_name |
---|
| 319 | |
---|
| 320 | return output |
---|
| 321 | |
---|
| 322 | if __name__ == "__main__": |
---|
| 323 | reader = Reader() |
---|
| 324 | print reader.read("../test/exp18_14_igor_2dqxqy.dat") |
---|
[952afaa] | 325 | |
---|
| 326 | |
---|