1 | """ |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | See the license text in license.txt |
---|
7 | |
---|
8 | copyright 2009, University of Tennessee |
---|
9 | """ |
---|
10 | |
---|
11 | import DataLoader.extensions.smearer as smearer |
---|
12 | import numpy |
---|
13 | import math |
---|
14 | import scipy.special |
---|
15 | |
---|
16 | def smear_selection(data1D): |
---|
17 | """ |
---|
18 | Creates the right type of smearer according |
---|
19 | to the data. |
---|
20 | |
---|
21 | The canSAS format has a rule that either |
---|
22 | slit smearing data OR resolution smearing data |
---|
23 | is available. |
---|
24 | |
---|
25 | For the present purpose, we choose the one that |
---|
26 | has none-zero data. If both slit and resolution |
---|
27 | smearing arrays are filled with good data |
---|
28 | (which should not happen), then we choose the |
---|
29 | resolution smearing data. |
---|
30 | |
---|
31 | @param data1D: Data1D object |
---|
32 | """ |
---|
33 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
34 | # object, just return None |
---|
35 | if data1D.__class__.__name__ != 'Data1D': |
---|
36 | return None |
---|
37 | |
---|
38 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl") and not hasattr(data1D, "dxw"): |
---|
39 | return None |
---|
40 | |
---|
41 | # Look for resolution smearing data |
---|
42 | _found_resolution = False |
---|
43 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
44 | |
---|
45 | # Check that we have non-zero data |
---|
46 | if data1D.dx[0]>0.0: |
---|
47 | _found_resolution = True |
---|
48 | #print "_found_resolution",_found_resolution |
---|
49 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
50 | # If we found resolution smearing data, return a QSmearer |
---|
51 | if _found_resolution == True: |
---|
52 | return QSmearer(data1D) |
---|
53 | |
---|
54 | # Look for slit smearing data |
---|
55 | _found_slit = False |
---|
56 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x) \ |
---|
57 | and data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
58 | |
---|
59 | # Check that we have non-zero data |
---|
60 | if data1D.dxl[0]>0.0 or data1D.dxw[0]>0.0: |
---|
61 | _found_slit = True |
---|
62 | |
---|
63 | # Sanity check: all data should be the same as a function of Q |
---|
64 | for item in data1D.dxl: |
---|
65 | if data1D.dxl[0] != item: |
---|
66 | _found_resolution = False |
---|
67 | break |
---|
68 | |
---|
69 | for item in data1D.dxw: |
---|
70 | if data1D.dxw[0] != item: |
---|
71 | _found_resolution = False |
---|
72 | break |
---|
73 | # If we found slit smearing data, return a slit smearer |
---|
74 | if _found_slit == True: |
---|
75 | return SlitSmearer(data1D) |
---|
76 | |
---|
77 | return None |
---|
78 | |
---|
79 | |
---|
80 | class _BaseSmearer(object): |
---|
81 | |
---|
82 | def __init__(self): |
---|
83 | self.nbins = 0 |
---|
84 | self._weights = None |
---|
85 | ## Internal flag to keep track of C++ smearer initialization |
---|
86 | self._init_complete = False |
---|
87 | self._smearer = None |
---|
88 | |
---|
89 | def __deepcopy__(self, memo={}): |
---|
90 | """ |
---|
91 | Return a valid copy of self. |
---|
92 | Avoid copying the _smearer C object and force a matrix recompute |
---|
93 | when the copy is used. |
---|
94 | """ |
---|
95 | result = _BaseSmearer() |
---|
96 | result.nbins = self.nbins |
---|
97 | return result |
---|
98 | |
---|
99 | |
---|
100 | def _compute_matrix(self): return NotImplemented |
---|
101 | |
---|
102 | def __call__(self, iq_in, first_bin=0, last_bin=None): |
---|
103 | """ |
---|
104 | Perform smearing |
---|
105 | """ |
---|
106 | # If this is the first time we call for smearing, |
---|
107 | # initialize the C++ smearer object first |
---|
108 | if not self._init_complete: |
---|
109 | self._initialize_smearer() |
---|
110 | |
---|
111 | # Get the max value for the last bin |
---|
112 | if last_bin is None or last_bin>=len(iq_in): |
---|
113 | last_bin = len(iq_in)-1 |
---|
114 | # Check that the first bin is positive |
---|
115 | if first_bin<0: |
---|
116 | first_bin = 0 |
---|
117 | |
---|
118 | # Sanity check |
---|
119 | if len(iq_in) != self.nbins: |
---|
120 | raise RuntimeError, "Invalid I(q) vector: inconsistent array length %d != %s" % (len(iq_in), str(self.nbins)) |
---|
121 | |
---|
122 | # Storage for smeared I(q) |
---|
123 | iq_out = numpy.zeros(self.nbins) |
---|
124 | smearer.smear(self._smearer, iq_in, iq_out, first_bin, last_bin) |
---|
125 | return iq_out |
---|
126 | |
---|
127 | class _SlitSmearer(_BaseSmearer): |
---|
128 | """ |
---|
129 | Slit smearing for I(q) array |
---|
130 | """ |
---|
131 | |
---|
132 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
133 | """ |
---|
134 | Initialization |
---|
135 | |
---|
136 | @param iq: I(q) array [cm-1] |
---|
137 | @param width: slit width [A-1] |
---|
138 | @param height: slit height [A-1] |
---|
139 | @param min: Q_min [A-1] |
---|
140 | @param max: Q_max [A-1] |
---|
141 | """ |
---|
142 | _BaseSmearer.__init__(self) |
---|
143 | ## Slit width in Q units |
---|
144 | self.width = width |
---|
145 | ## Slit height in Q units |
---|
146 | self.height = height |
---|
147 | ## Q_min (Min Q-value for I(q)) |
---|
148 | self.min = min |
---|
149 | ## Q_max (Max Q_value for I(q)) |
---|
150 | self.max = max |
---|
151 | ## Number of Q bins |
---|
152 | self.nbins = nbins |
---|
153 | ## Number of points used in the smearing computation |
---|
154 | self.npts = 10000 |
---|
155 | ## Smearing matrix |
---|
156 | self._weights = None |
---|
157 | |
---|
158 | def _initialize_smearer(self): |
---|
159 | """ |
---|
160 | Initialize the C++ smearer object. |
---|
161 | This method HAS to be called before smearing |
---|
162 | """ |
---|
163 | self._smearer = smearer.new_slit_smearer(self.width, self.height, self.min, self.max, self.nbins) |
---|
164 | self._init_complete = True |
---|
165 | |
---|
166 | |
---|
167 | class SlitSmearer(_SlitSmearer): |
---|
168 | """ |
---|
169 | Adaptor for slit smearing class and SANS data |
---|
170 | """ |
---|
171 | def __init__(self, data1D): |
---|
172 | """ |
---|
173 | Assumption: equally spaced bins of increasing q-values. |
---|
174 | |
---|
175 | @param data1D: data used to set the smearing parameters |
---|
176 | """ |
---|
177 | # Initialization from parent class |
---|
178 | super(SlitSmearer, self).__init__() |
---|
179 | |
---|
180 | ## Slit width |
---|
181 | self.width = 0 |
---|
182 | if data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
183 | self.width = data1D.dxw[0] |
---|
184 | # Sanity check |
---|
185 | for value in data1D.dxw: |
---|
186 | if value != self.width: |
---|
187 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
188 | |
---|
189 | ## Slit height |
---|
190 | self.height = 0 |
---|
191 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x): |
---|
192 | self.height = data1D.dxl[0] |
---|
193 | # Sanity check |
---|
194 | for value in data1D.dxl: |
---|
195 | if value != self.height: |
---|
196 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
197 | |
---|
198 | ## Number of Q bins |
---|
199 | self.nbins = len(data1D.x) |
---|
200 | ## Minimum Q |
---|
201 | self.min = data1D.x[0] |
---|
202 | ## Maximum |
---|
203 | self.max = data1D.x[len(data1D.x)-1] |
---|
204 | |
---|
205 | #print "nbin,npts",self.nbins,self.npts |
---|
206 | |
---|
207 | class _QSmearer(_BaseSmearer): |
---|
208 | """ |
---|
209 | Perform Gaussian Q smearing |
---|
210 | """ |
---|
211 | |
---|
212 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
213 | """ |
---|
214 | Initialization |
---|
215 | |
---|
216 | @param nbins: number of Q bins |
---|
217 | @param width: array standard deviation in Q [A-1] |
---|
218 | @param min: Q_min [A-1] |
---|
219 | @param max: Q_max [A-1] |
---|
220 | """ |
---|
221 | _BaseSmearer.__init__(self) |
---|
222 | ## Standard deviation in Q [A-1] |
---|
223 | self.width = width |
---|
224 | ## Q_min (Min Q-value for I(q)) |
---|
225 | self.min = min |
---|
226 | ## Q_max (Max Q_value for I(q)) |
---|
227 | self.max = max |
---|
228 | ## Number of Q bins |
---|
229 | self.nbins = nbins |
---|
230 | ## Smearing matrix |
---|
231 | self._weights = None |
---|
232 | |
---|
233 | def _initialize_smearer(self): |
---|
234 | """ |
---|
235 | Initialize the C++ smearer object. |
---|
236 | This method HAS to be called before smearing |
---|
237 | """ |
---|
238 | self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), self.min, self.max, self.nbins) |
---|
239 | self._init_complete = True |
---|
240 | |
---|
241 | class QSmearer(_QSmearer): |
---|
242 | """ |
---|
243 | Adaptor for Gaussian Q smearing class and SANS data |
---|
244 | """ |
---|
245 | def __init__(self, data1D): |
---|
246 | """ |
---|
247 | Assumption: equally spaced bins of increasing q-values. |
---|
248 | |
---|
249 | @param data1D: data used to set the smearing parameters |
---|
250 | """ |
---|
251 | # Initialization from parent class |
---|
252 | super(QSmearer, self).__init__() |
---|
253 | |
---|
254 | ## Resolution |
---|
255 | self.width = numpy.zeros(len(data1D.x)) |
---|
256 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
257 | self.width = data1D.dx |
---|
258 | |
---|
259 | ## Number of Q bins |
---|
260 | self.nbins = len(data1D.x) |
---|
261 | ## Minimum Q |
---|
262 | self.min = data1D.x[0] |
---|
263 | ## Maximum |
---|
264 | self.max = data1D.x[len(data1D.x)-1] |
---|
265 | |
---|
266 | |
---|
267 | if __name__ == '__main__': |
---|
268 | x = 0.001*numpy.arange(1,11) |
---|
269 | y = 12.0-numpy.arange(1,11) |
---|
270 | print x |
---|
271 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
272 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
273 | |
---|
274 | |
---|
275 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
276 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
277 | s._compute_matrix() |
---|
278 | |
---|
279 | sy = s(y) |
---|
280 | print sy |
---|
281 | |
---|
282 | if True: |
---|
283 | for i in range(10): |
---|
284 | print x[i],y[i], sy[i] |
---|
285 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
286 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
287 | #s._compute_iq(q) |
---|
288 | |
---|
289 | |
---|
290 | |
---|
291 | |
---|