1 | |
---|
2 | ##################################################################### |
---|
3 | #This software was developed by the University of Tennessee as part of the |
---|
4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
5 | #project funded by the US National Science Foundation. |
---|
6 | #See the license text in license.txt |
---|
7 | #copyright 2008, University of Tennessee |
---|
8 | ###################################################################### |
---|
9 | import numpy |
---|
10 | import math |
---|
11 | import logging |
---|
12 | import sys |
---|
13 | import DataLoader.extensions.smearer as smearer |
---|
14 | from DataLoader.smearing_2d import Smearer2D |
---|
15 | |
---|
16 | def smear_selection(data1D, model = None): |
---|
17 | """ |
---|
18 | Creates the right type of smearer according |
---|
19 | to the data. |
---|
20 | |
---|
21 | The canSAS format has a rule that either |
---|
22 | slit smearing data OR resolution smearing data |
---|
23 | is available. |
---|
24 | |
---|
25 | For the present purpose, we choose the one that |
---|
26 | has none-zero data. If both slit and resolution |
---|
27 | smearing arrays are filled with good data |
---|
28 | (which should not happen), then we choose the |
---|
29 | resolution smearing data. |
---|
30 | |
---|
31 | :param data1D: Data1D object |
---|
32 | :param model: sans.model instance |
---|
33 | """ |
---|
34 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
35 | # object, just return None |
---|
36 | if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
37 | if data1D == None: |
---|
38 | return None |
---|
39 | elif data1D.dqx_data == None or data1D.dqy_data == None: |
---|
40 | return None |
---|
41 | return Smearer2D(data1D) |
---|
42 | |
---|
43 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ |
---|
44 | and not hasattr(data1D, "dxw"): |
---|
45 | return None |
---|
46 | |
---|
47 | # Look for resolution smearing data |
---|
48 | _found_resolution = False |
---|
49 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
50 | |
---|
51 | # Check that we have non-zero data |
---|
52 | if data1D.dx[0] > 0.0: |
---|
53 | _found_resolution = True |
---|
54 | #print "_found_resolution",_found_resolution |
---|
55 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
56 | # If we found resolution smearing data, return a QSmearer |
---|
57 | if _found_resolution == True: |
---|
58 | return QSmearer(data1D, model) |
---|
59 | |
---|
60 | # Look for slit smearing data |
---|
61 | _found_slit = False |
---|
62 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ |
---|
63 | and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
64 | |
---|
65 | # Check that we have non-zero data |
---|
66 | if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: |
---|
67 | _found_slit = True |
---|
68 | |
---|
69 | # Sanity check: all data should be the same as a function of Q |
---|
70 | for item in data1D.dxl: |
---|
71 | if data1D.dxl[0] != item: |
---|
72 | _found_resolution = False |
---|
73 | break |
---|
74 | |
---|
75 | for item in data1D.dxw: |
---|
76 | if data1D.dxw[0] != item: |
---|
77 | _found_resolution = False |
---|
78 | break |
---|
79 | # If we found slit smearing data, return a slit smearer |
---|
80 | if _found_slit == True: |
---|
81 | return SlitSmearer(data1D, model) |
---|
82 | return None |
---|
83 | |
---|
84 | |
---|
85 | class _BaseSmearer(object): |
---|
86 | |
---|
87 | def __init__(self): |
---|
88 | self.nbins = 0 |
---|
89 | self.nbins_low = 0 |
---|
90 | self.nbins_high = 0 |
---|
91 | self._weights = None |
---|
92 | ## Internal flag to keep track of C++ smearer initialization |
---|
93 | self._init_complete = False |
---|
94 | self._smearer = None |
---|
95 | self.model = None |
---|
96 | |
---|
97 | def __deepcopy__(self, memo={}): |
---|
98 | """ |
---|
99 | Return a valid copy of self. |
---|
100 | Avoid copying the _smearer C object and force a matrix recompute |
---|
101 | when the copy is used. |
---|
102 | """ |
---|
103 | result = _BaseSmearer() |
---|
104 | result.nbins = self.nbins |
---|
105 | return result |
---|
106 | |
---|
107 | def _compute_matrix(self): |
---|
108 | """ |
---|
109 | """ |
---|
110 | return NotImplemented |
---|
111 | |
---|
112 | def get_bin_range(self, q_min=None, q_max=None): |
---|
113 | """ |
---|
114 | |
---|
115 | :param q_min: minimum q-value to smear |
---|
116 | :param q_max: maximum q-value to smear |
---|
117 | |
---|
118 | """ |
---|
119 | # If this is the first time we call for smearing, |
---|
120 | # initialize the C++ smearer object first |
---|
121 | if not self._init_complete: |
---|
122 | self._initialize_smearer() |
---|
123 | if q_min == None: |
---|
124 | q_min = self.min |
---|
125 | if q_max == None: |
---|
126 | q_max = self.max |
---|
127 | |
---|
128 | _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, |
---|
129 | q_max) |
---|
130 | _first_bin = None |
---|
131 | _last_bin = None |
---|
132 | |
---|
133 | #step = (self.max - self.min) / (self.nbins - 1.0) |
---|
134 | # Find the first and last bin number in all extrapolated and real data |
---|
135 | try: |
---|
136 | for i in range(self.nbins): |
---|
137 | q_i = smearer.get_q(self._smearer, i) |
---|
138 | if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): |
---|
139 | # Identify first and last bin |
---|
140 | if _first_bin is None: |
---|
141 | _first_bin = i |
---|
142 | else: |
---|
143 | _last_bin = i |
---|
144 | except: |
---|
145 | msg = "_BaseSmearer.get_bin_range: " |
---|
146 | msg += " error getting range\n %s" % sys.exc_value |
---|
147 | raise RuntimeError, msg |
---|
148 | |
---|
149 | # Find the first and last bin number only in the real data |
---|
150 | _first_bin, _last_bin = self._get_unextrapolated_bin( \ |
---|
151 | _first_bin, _last_bin) |
---|
152 | |
---|
153 | return _first_bin, _last_bin |
---|
154 | |
---|
155 | def __call__(self, iq_in, first_bin = 0, last_bin = None): |
---|
156 | """ |
---|
157 | Perform smearing |
---|
158 | """ |
---|
159 | # If this is the first time we call for smearing, |
---|
160 | # initialize the C++ smearer object first |
---|
161 | if not self._init_complete: |
---|
162 | self._initialize_smearer() |
---|
163 | |
---|
164 | if last_bin is None or last_bin >= len(iq_in): |
---|
165 | last_bin = len(iq_in) - 1 |
---|
166 | # Check that the first bin is positive |
---|
167 | if first_bin < 0: |
---|
168 | first_bin = 0 |
---|
169 | |
---|
170 | # With a model given, compute I for the extrapolated points and append |
---|
171 | # to the iq_in |
---|
172 | iq_in_temp = iq_in |
---|
173 | if self.model != None: |
---|
174 | temp_first, temp_last = self._get_extrapolated_bin( \ |
---|
175 | first_bin, last_bin) |
---|
176 | if self.nbins_low > 0: |
---|
177 | iq_in_low = self.model.evalDistribution( \ |
---|
178 | numpy.fabs(self.qvalues[0:self.nbins_low])) |
---|
179 | iq_in_high = self.model.evalDistribution( \ |
---|
180 | self.qvalues[(len(self.qvalues) - \ |
---|
181 | self.nbins_high - 1):]) |
---|
182 | # Todo: find out who is sending iq[last_poin] = 0. |
---|
183 | if iq_in[len(iq_in) - 1] == 0: |
---|
184 | iq_in[len(iq_in) - 1] = iq_in_high[0] |
---|
185 | # Append the extrapolated points to the data points |
---|
186 | if self.nbins_low > 0: |
---|
187 | iq_in_temp = numpy.append(iq_in_low, iq_in) |
---|
188 | if self.nbins_high > 0: |
---|
189 | iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:]) |
---|
190 | else: |
---|
191 | temp_first = first_bin |
---|
192 | temp_last = last_bin |
---|
193 | #iq_in_temp = iq_in |
---|
194 | |
---|
195 | # Sanity check |
---|
196 | if len(iq_in_temp) != self.nbins: |
---|
197 | msg = "Invalid I(q) vector: inconsistent array " |
---|
198 | msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins)) |
---|
199 | raise RuntimeError, msg |
---|
200 | |
---|
201 | # Storage for smeared I(q) |
---|
202 | iq_out = numpy.zeros(self.nbins) |
---|
203 | |
---|
204 | smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out, |
---|
205 | #0, self.nbins - 1) |
---|
206 | temp_first, temp_last) |
---|
207 | #first_bin, last_bin) |
---|
208 | if smear_output < 0: |
---|
209 | msg = "_BaseSmearer: could not smear, code = %g" % smear_output |
---|
210 | raise RuntimeError, msg |
---|
211 | |
---|
212 | temp_first += self.nbins_low |
---|
213 | temp_last = self.nbins - self.nbins_high |
---|
214 | out = iq_out[temp_first: temp_last] |
---|
215 | |
---|
216 | return out |
---|
217 | |
---|
218 | def _initialize_smearer(self): |
---|
219 | """ |
---|
220 | """ |
---|
221 | return NotImplemented |
---|
222 | |
---|
223 | |
---|
224 | def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
225 | """ |
---|
226 | Get unextrapolated first bin and the last bin |
---|
227 | |
---|
228 | : param first_bin: extrapolated first_bin |
---|
229 | : param last_bin: extrapolated last_bin |
---|
230 | |
---|
231 | : return fist_bin, last_bin: unextrapolated first and last bin |
---|
232 | """ |
---|
233 | # For first bin |
---|
234 | if first_bin <= self.nbins_low: |
---|
235 | first_bin = 0 |
---|
236 | else: |
---|
237 | first_bin = first_bin - self.nbins_low |
---|
238 | # For last bin |
---|
239 | if last_bin >= (self.nbins - self.nbins_high): |
---|
240 | last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1) |
---|
241 | elif last_bin >= self.nbins_low: |
---|
242 | last_bin = last_bin - self.nbins_low |
---|
243 | else: |
---|
244 | last_bin = 0 |
---|
245 | return first_bin, last_bin |
---|
246 | |
---|
247 | def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
248 | """ |
---|
249 | Get extrapolated first bin and the last bin |
---|
250 | |
---|
251 | : param first_bin: unextrapolated first_bin |
---|
252 | : param last_bin: unextrapolated last_bin |
---|
253 | |
---|
254 | : return first_bin, last_bin: extrapolated first and last bin |
---|
255 | """ |
---|
256 | # For the first bin |
---|
257 | # In the case that needs low extrapolation data |
---|
258 | first_bin = 0 |
---|
259 | # For last bin |
---|
260 | if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1): |
---|
261 | # In the case that needs higher q extrapolation data |
---|
262 | last_bin = self.nbins - 1 |
---|
263 | else: |
---|
264 | # In the case that doesn't need higher q extrapolation data |
---|
265 | last_bin += self.nbins_low |
---|
266 | |
---|
267 | return first_bin, last_bin |
---|
268 | |
---|
269 | class _SlitSmearer(_BaseSmearer): |
---|
270 | """ |
---|
271 | Slit smearing for I(q) array |
---|
272 | """ |
---|
273 | |
---|
274 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
275 | """ |
---|
276 | Initialization |
---|
277 | |
---|
278 | :param iq: I(q) array [cm-1] |
---|
279 | :param width: slit width [A-1] |
---|
280 | :param height: slit height [A-1] |
---|
281 | :param min: Q_min [A-1] |
---|
282 | :param max: Q_max [A-1] |
---|
283 | |
---|
284 | """ |
---|
285 | _BaseSmearer.__init__(self) |
---|
286 | ## Slit width in Q units |
---|
287 | self.width = width |
---|
288 | ## Slit height in Q units |
---|
289 | self.height = height |
---|
290 | ## Q_min (Min Q-value for I(q)) |
---|
291 | self.min = min |
---|
292 | ## Q_max (Max Q_value for I(q)) |
---|
293 | self.max = max |
---|
294 | ## Number of Q bins |
---|
295 | self.nbins = nbins |
---|
296 | ## Number of points used in the smearing computation |
---|
297 | self.npts = 3000 |
---|
298 | ## Smearing matrix |
---|
299 | self._weights = None |
---|
300 | self.qvalues = None |
---|
301 | |
---|
302 | def _initialize_smearer(self): |
---|
303 | """ |
---|
304 | Initialize the C++ smearer object. |
---|
305 | This method HAS to be called before smearing |
---|
306 | """ |
---|
307 | #self._smearer = smearer.new_slit_smearer(self.width, |
---|
308 | # self.height, self.min, self.max, self.nbins) |
---|
309 | self._smearer = smearer.new_slit_smearer_with_q(self.width, |
---|
310 | self.height, self.qvalues) |
---|
311 | self._init_complete = True |
---|
312 | |
---|
313 | def get_unsmeared_range(self, q_min, q_max): |
---|
314 | """ |
---|
315 | Determine the range needed in unsmeared-Q to cover |
---|
316 | the smeared Q range |
---|
317 | """ |
---|
318 | # Range used for input to smearing |
---|
319 | _qmin_unsmeared = q_min |
---|
320 | _qmax_unsmeared = q_max |
---|
321 | try: |
---|
322 | _qmin_unsmeared = self.min |
---|
323 | _qmax_unsmeared = self.max |
---|
324 | except: |
---|
325 | logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) |
---|
326 | return _qmin_unsmeared, _qmax_unsmeared |
---|
327 | |
---|
328 | class SlitSmearer(_SlitSmearer): |
---|
329 | """ |
---|
330 | Adaptor for slit smearing class and SANS data |
---|
331 | """ |
---|
332 | def __init__(self, data1D, model = None): |
---|
333 | """ |
---|
334 | Assumption: equally spaced bins of increasing q-values. |
---|
335 | |
---|
336 | :param data1D: data used to set the smearing parameters |
---|
337 | """ |
---|
338 | # Initialization from parent class |
---|
339 | super(SlitSmearer, self).__init__() |
---|
340 | |
---|
341 | ## Slit width |
---|
342 | self.width = 0 |
---|
343 | self.nbins_low = 0 |
---|
344 | self.nbins_high = 0 |
---|
345 | self.model = model |
---|
346 | if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
347 | self.width = data1D.dxw[0] |
---|
348 | # Sanity check |
---|
349 | for value in data1D.dxw: |
---|
350 | if value != self.width: |
---|
351 | msg = "Slit smearing parameters must " |
---|
352 | msg += " be the same for all data" |
---|
353 | raise RuntimeError, msg |
---|
354 | ## Slit height |
---|
355 | self.height = 0 |
---|
356 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): |
---|
357 | self.height = data1D.dxl[0] |
---|
358 | # Sanity check |
---|
359 | for value in data1D.dxl: |
---|
360 | if value != self.height: |
---|
361 | msg = "Slit smearing parameters must be" |
---|
362 | msg += " the same for all data" |
---|
363 | raise RuntimeError, msg |
---|
364 | # If a model is given, get the q extrapolation |
---|
365 | if self.model == None: |
---|
366 | data1d_x = data1D.x |
---|
367 | else: |
---|
368 | # Take larger sigma |
---|
369 | if self.height > self.width: |
---|
370 | # The denominator (2.0) covers all the possible w^2 + h^2 range |
---|
371 | sigma_in = data1D.dxl / 2.0 |
---|
372 | elif self.width > 0: |
---|
373 | sigma_in = data1D.dxw / 2.0 |
---|
374 | else: |
---|
375 | sigma_in = [] |
---|
376 | |
---|
377 | self.nbins_low, self.nbins_high, _, data1d_x = \ |
---|
378 | get_qextrapolate(sigma_in, data1D.x) |
---|
379 | |
---|
380 | ## Number of Q bins |
---|
381 | self.nbins = len(data1d_x) |
---|
382 | ## Minimum Q |
---|
383 | self.min = min(data1d_x) |
---|
384 | ## Maximum |
---|
385 | self.max = max(data1d_x) |
---|
386 | ## Q-values |
---|
387 | self.qvalues = data1d_x |
---|
388 | |
---|
389 | |
---|
390 | class _QSmearer(_BaseSmearer): |
---|
391 | """ |
---|
392 | Perform Gaussian Q smearing |
---|
393 | """ |
---|
394 | |
---|
395 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
396 | """ |
---|
397 | Initialization |
---|
398 | |
---|
399 | :param nbins: number of Q bins |
---|
400 | :param width: array standard deviation in Q [A-1] |
---|
401 | :param min: Q_min [A-1] |
---|
402 | :param max: Q_max [A-1] |
---|
403 | """ |
---|
404 | _BaseSmearer.__init__(self) |
---|
405 | ## Standard deviation in Q [A-1] |
---|
406 | self.width = width |
---|
407 | ## Q_min (Min Q-value for I(q)) |
---|
408 | self.min = min |
---|
409 | ## Q_max (Max Q_value for I(q)) |
---|
410 | self.max = max |
---|
411 | ## Number of Q bins |
---|
412 | self.nbins = nbins |
---|
413 | ## Smearing matrix |
---|
414 | self._weights = None |
---|
415 | self.qvalues = None |
---|
416 | |
---|
417 | def _initialize_smearer(self): |
---|
418 | """ |
---|
419 | Initialize the C++ smearer object. |
---|
420 | This method HAS to be called before smearing |
---|
421 | """ |
---|
422 | #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), |
---|
423 | # self.min, self.max, self.nbins) |
---|
424 | self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), |
---|
425 | self.qvalues) |
---|
426 | self._init_complete = True |
---|
427 | |
---|
428 | def get_unsmeared_range(self, q_min, q_max): |
---|
429 | """ |
---|
430 | Determine the range needed in unsmeared-Q to cover |
---|
431 | the smeared Q range |
---|
432 | Take 3 sigmas as the offset between smeared and unsmeared space |
---|
433 | """ |
---|
434 | # Range used for input to smearing |
---|
435 | _qmin_unsmeared = q_min |
---|
436 | _qmax_unsmeared = q_max |
---|
437 | try: |
---|
438 | offset = 3.0 * max(self.width) |
---|
439 | _qmin_unsmeared = max([self.min, q_min - offset]) |
---|
440 | _qmax_unsmeared = min([self.max, q_max + offset]) |
---|
441 | except: |
---|
442 | logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) |
---|
443 | return _qmin_unsmeared, _qmax_unsmeared |
---|
444 | |
---|
445 | |
---|
446 | class QSmearer(_QSmearer): |
---|
447 | """ |
---|
448 | Adaptor for Gaussian Q smearing class and SANS data |
---|
449 | """ |
---|
450 | def __init__(self, data1D, model = None): |
---|
451 | """ |
---|
452 | Assumption: equally spaced bins of increasing q-values. |
---|
453 | |
---|
454 | :param data1D: data used to set the smearing parameters |
---|
455 | """ |
---|
456 | # Initialization from parent class |
---|
457 | super(QSmearer, self).__init__() |
---|
458 | data1d_x = [] |
---|
459 | self.nbins_low = 0 |
---|
460 | self.nbins_high = 0 |
---|
461 | self.model = model |
---|
462 | ## Resolution |
---|
463 | #self.width = numpy.zeros(len(data1D.x)) |
---|
464 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
465 | self.width = data1D.dx |
---|
466 | |
---|
467 | if self.model == None: |
---|
468 | data1d_x = data1D.x |
---|
469 | else: |
---|
470 | self.nbins_low, self.nbins_high, self.width, data1d_x = \ |
---|
471 | get_qextrapolate(self.width, data1D.x) |
---|
472 | |
---|
473 | ## Number of Q bins |
---|
474 | self.nbins = len(data1d_x) |
---|
475 | ## Minimum Q |
---|
476 | self.min = min(data1d_x) |
---|
477 | ## Maximum |
---|
478 | self.max = max(data1d_x) |
---|
479 | ## Q-values |
---|
480 | self.qvalues = data1d_x |
---|
481 | |
---|
482 | |
---|
483 | def get_qextrapolate(width, data_x): |
---|
484 | """ |
---|
485 | Make fake data_x points extrapolated outside of the data_x points |
---|
486 | |
---|
487 | : param width: array of std of q resolution |
---|
488 | : param Data1D.x: Data1D.x array |
---|
489 | |
---|
490 | : return new_width, data_x_ext: extrapolated width array and x array |
---|
491 | |
---|
492 | : assumption1: data_x is ordered from lower q to higher q |
---|
493 | : assumption2: len(data) = len(width) |
---|
494 | : assumption3: the distance between the data points is more compact |
---|
495 | than the size of width |
---|
496 | : Todo1: Make sure that the assumptions are correct for Data1D |
---|
497 | : Todo2: This fixes the edge problem in Qsmearer but still needs to make |
---|
498 | smearer interface |
---|
499 | """ |
---|
500 | # Length of the width |
---|
501 | length = len(width) |
---|
502 | width_low = math.fabs(width[0]) |
---|
503 | width_high = math.fabs(width[length -1]) |
---|
504 | |
---|
505 | # Compare width(dQ) to the data bin size and take smaller one as the bin |
---|
506 | # size of the extrapolation; this will correct some weird behavior |
---|
507 | # at the edge: This method was out (commented) |
---|
508 | # because it becomes very expansive when |
---|
509 | # bin size is very small comparing to the width. |
---|
510 | # Now on, we will just give the bin size of the extrapolated points |
---|
511 | # based on the width. |
---|
512 | # Find bin sizes |
---|
513 | #bin_size_low = math.fabs(data_x[1] - data_x[0]) |
---|
514 | #bin_size_high = math.fabs(data_x[length - 1] - data_x[length - 2]) |
---|
515 | # Let's set the bin size 1/3 of the width(sigma), it is good as long as |
---|
516 | # the scattering is monotonous. |
---|
517 | #if width_low < (bin_size_low): |
---|
518 | bin_size_low = width_low / 10.0 |
---|
519 | #if width_high < (bin_size_high): |
---|
520 | bin_size_high = width_high / 10.0 |
---|
521 | |
---|
522 | # Number of q points required below the 1st data point in order to extend |
---|
523 | # them 3 times of the width (std) |
---|
524 | nbins_low = math.ceil(3.0 * width_low / bin_size_low) |
---|
525 | # Number of q points required above the last data point |
---|
526 | nbins_high = math.ceil(3.0 * width_high / (bin_size_high)) |
---|
527 | # Make null q points |
---|
528 | extra_low = numpy.zeros(nbins_low) |
---|
529 | extra_high = numpy.zeros(nbins_high) |
---|
530 | # Give extrapolated values |
---|
531 | ind = 0 |
---|
532 | qvalue = data_x[0] - bin_size_low |
---|
533 | #if qvalue > 0: |
---|
534 | while(ind < nbins_low): |
---|
535 | extra_low[nbins_low - (ind + 1)] = qvalue |
---|
536 | qvalue -= bin_size_low |
---|
537 | ind += 1 |
---|
538 | #if qvalue <= 0: |
---|
539 | # break |
---|
540 | # Redefine nbins_low |
---|
541 | nbins_low = ind |
---|
542 | # Reset ind for another extrapolation |
---|
543 | ind = 0 |
---|
544 | qvalue = data_x[length -1] + bin_size_high |
---|
545 | while(ind < nbins_high): |
---|
546 | extra_high[ind] = qvalue |
---|
547 | qvalue += bin_size_high |
---|
548 | ind += 1 |
---|
549 | # Make a new qx array |
---|
550 | if nbins_low > 0: |
---|
551 | data_x_ext = numpy.append(extra_low, data_x) |
---|
552 | else: |
---|
553 | data_x_ext = data_x |
---|
554 | data_x_ext = numpy.append(data_x_ext, extra_high) |
---|
555 | |
---|
556 | # Redefine extra_low and high based on corrected nbins |
---|
557 | # And note that it is not necessary for extra_width to be a non-zero |
---|
558 | if nbins_low > 0: |
---|
559 | extra_low = numpy.zeros(nbins_low) |
---|
560 | extra_high = numpy.zeros(nbins_high) |
---|
561 | # Make new width array |
---|
562 | new_width = numpy.append(extra_low, width) |
---|
563 | new_width = numpy.append(new_width, extra_high) |
---|
564 | |
---|
565 | # nbins corrections due to the negative q value |
---|
566 | nbins_low = nbins_low - len(data_x_ext[data_x_ext<0]) |
---|
567 | return nbins_low, nbins_high, \ |
---|
568 | new_width[data_x_ext>0], data_x_ext[data_x_ext>0] |
---|
569 | |
---|
570 | if __name__ == '__main__': |
---|
571 | x = 0.001 * numpy.arange(1, 11) |
---|
572 | y = 12.0 - numpy.arange(1, 11) |
---|
573 | print x |
---|
574 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
575 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
576 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
577 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
578 | s._compute_matrix() |
---|
579 | |
---|
580 | sy = s(y) |
---|
581 | print sy |
---|
582 | |
---|
583 | if True: |
---|
584 | for i in range(10): |
---|
585 | print x[i], y[i], sy[i] |
---|
586 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
587 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
588 | #s._compute_iq(q) |
---|
589 | |
---|
590 | |
---|
591 | |
---|
592 | |
---|