source: sasview/DataLoader/qsmearing.py @ 9188cc1

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 9188cc1 was a3f8d58, checked in by Mathieu Doucet <doucetm@…>, 15 years ago

dataloader: converted smearing to C and allowed for partial Q range

  • Property mode set to 100644
File size: 9.3 KB
RevLine 
[d00f8ff]1"""
2This software was developed by the University of Tennessee as part of the
3Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4project funded by the US National Science Foundation.
5
6See the license text in license.txt
7
[a3f8d58]8copyright 2009, University of Tennessee
[d00f8ff]9"""
[4fe4394]10
[a3f8d58]11import DataLoader.extensions.smearer as smearer
[d00f8ff]12import numpy
13import math
14import scipy.special
15
16def smear_selection(data1D):
17    """
18        Creates the right type of smearer according
[4fe4394]19        to the data.
20   
21        The canSAS format has a rule that either
22        slit smearing data OR resolution smearing data
23        is available.
24       
25        For the present purpose, we choose the one that
26        has none-zero data. If both slit and resolution
27        smearing arrays are filled with good data
28        (which should not happen), then we choose the
29        resolution smearing data.
30       
31        @param data1D: Data1D object
[d00f8ff]32    """
[4fe4394]33    # Sanity check. If we are not dealing with a SANS Data1D
34    # object, just return None
[21d2eb0]35    if  data1D.__class__.__name__ != 'Data1D':
36        return None
37   
38    if  not hasattr(data1D, "dx") and not hasattr(data1D, "dxl") and not hasattr(data1D, "dxw"):
[4fe4394]39        return None
40   
41    # Look for resolution smearing data
42    _found_resolution = False
43    if data1D.dx is not None and len(data1D.dx)==len(data1D.x):
44       
45        # Check that we have non-zero data
46        if data1D.dx[0]>0.0:
47            _found_resolution = True
[c7ac15e]48            #print "_found_resolution",_found_resolution
49            #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0]
[4fe4394]50    # If we found resolution smearing data, return a QSmearer
51    if _found_resolution == True:
52        return QSmearer(data1D)
53
54    # Look for slit smearing data
55    _found_slit = False
56    if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x) \
57        and data1D.dxw is not None and len(data1D.dxw)==len(data1D.x):
58       
59        # Check that we have non-zero data
60        if data1D.dxl[0]>0.0 or data1D.dxw[0]>0.0:
61            _found_slit = True
62       
63        # Sanity check: all data should be the same as a function of Q
64        for item in data1D.dxl:
65            if data1D.dxl[0] != item:
66                _found_resolution = False
67                break
68           
69        for item in data1D.dxw:
70            if data1D.dxw[0] != item:
71                _found_resolution = False
72                break
73    # If we found slit smearing data, return a slit smearer
74    if _found_slit == True:
75        return SlitSmearer(data1D)
76   
77    return None
78           
[d00f8ff]79
80class _BaseSmearer(object):
81   
82    def __init__(self):
83        self.nbins = 0
84        self._weights = None
[a3f8d58]85        ## Internal flag to keep track of C++ smearer initialization
86        self._init_complete = False
87        self._smearer = None
88       
89    def __deepcopy__(self, memo={}):
90        """
91            Return a valid copy of self.
92            Avoid copying the _smearer C object and force a matrix recompute
93            when the copy is used. 
94        """
95        result = _BaseSmearer()
96        result.nbins = self.nbins
97        return result
98
[d00f8ff]99       
100    def _compute_matrix(self): return NotImplemented
101
[a3f8d58]102    def __call__(self, iq_in, first_bin=0, last_bin=None):
[d00f8ff]103        """
[a3f8d58]104            Perform smearing
[d00f8ff]105        """
[a3f8d58]106        # If this is the first time we call for smearing,
107        # initialize the C++ smearer object first
108        if not self._init_complete:
109            self._initialize_smearer()
110             
111        # Get the max value for the last bin
112        if last_bin is None or last_bin>=len(iq_in):
113            last_bin = len(iq_in)-1
114        # Check that the first bin is positive
115        if first_bin<0:
116            first_bin = 0
[d00f8ff]117           
[a3f8d58]118        # Sanity check
119        if len(iq_in) != self.nbins:
120            raise RuntimeError, "Invalid I(q) vector: inconsistent array length %d != %s" % (len(iq_in), str(self.nbins))
121             
122        # Storage for smeared I(q)   
123        iq_out = numpy.zeros(self.nbins)
124        smearer.smear(self._smearer, iq_in, iq_out, first_bin, last_bin)
125        return iq_out
[d00f8ff]126   
127class _SlitSmearer(_BaseSmearer):
128    """
129        Slit smearing for I(q) array
130    """
131   
132    def __init__(self, nbins=None, width=None, height=None, min=None, max=None):
133        """
134            Initialization
135           
136            @param iq: I(q) array [cm-1]
137            @param width: slit width [A-1]
138            @param height: slit height [A-1]
139            @param min: Q_min [A-1]
140            @param max: Q_max [A-1]
141        """
[a3f8d58]142        _BaseSmearer.__init__(self)
[d00f8ff]143        ## Slit width in Q units
144        self.width  = width
145        ## Slit height in Q units
146        self.height = height
147        ## Q_min (Min Q-value for I(q))
148        self.min    = min
149        ## Q_max (Max Q_value for I(q))
150        self.max    = max
151        ## Number of Q bins
152        self.nbins  = nbins
153        ## Number of points used in the smearing computation
[c7ac15e]154        self.npts   = 10000
[d00f8ff]155        ## Smearing matrix
156        self._weights = None
157       
[a3f8d58]158    def _initialize_smearer(self):
[d00f8ff]159        """
[a3f8d58]160            Initialize the C++ smearer object.
161            This method HAS to be called before smearing
[d00f8ff]162        """
[a3f8d58]163        self._smearer = smearer.new_slit_smearer(self.width, self.height, self.min, self.max, self.nbins)
164        self._init_complete = True
[fe2ade9]165
[d00f8ff]166
167class SlitSmearer(_SlitSmearer):
168    """
169        Adaptor for slit smearing class and SANS data
170    """
171    def __init__(self, data1D):
172        """
173            Assumption: equally spaced bins of increasing q-values.
174           
175            @param data1D: data used to set the smearing parameters
176        """
177        # Initialization from parent class
178        super(SlitSmearer, self).__init__()
179       
180        ## Slit width
181        self.width = 0
182        if data1D.dxw is not None and len(data1D.dxw)==len(data1D.x):
183            self.width = data1D.dxw[0]
184            # Sanity check
185            for value in data1D.dxw:
186                if value != self.width:
187                    raise RuntimeError, "Slit smearing parameters must be the same for all data"
188               
189        ## Slit height
190        self.height = 0
191        if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x):
192            self.height = data1D.dxl[0]
193            # Sanity check
194            for value in data1D.dxl:
195                if value != self.height:
196                    raise RuntimeError, "Slit smearing parameters must be the same for all data"
197       
198        ## Number of Q bins
199        self.nbins = len(data1D.x)
200        ## Minimum Q
201        self.min = data1D.x[0]
202        ## Maximum
203        self.max = data1D.x[len(data1D.x)-1]       
204
[c7ac15e]205        #print "nbin,npts",self.nbins,self.npts
[d00f8ff]206
207class _QSmearer(_BaseSmearer):
208    """
209        Perform Gaussian Q smearing
210    """
211       
212    def __init__(self, nbins=None, width=None, min=None, max=None):
213        """
214            Initialization
215           
216            @param nbins: number of Q bins
[c0d9981]217            @param width: array standard deviation in Q [A-1]
[d00f8ff]218            @param min: Q_min [A-1]
219            @param max: Q_max [A-1]
220        """
[a3f8d58]221        _BaseSmearer.__init__(self)
[d00f8ff]222        ## Standard deviation in Q [A-1]
223        self.width  = width
224        ## Q_min (Min Q-value for I(q))
225        self.min    = min
226        ## Q_max (Max Q_value for I(q))
227        self.max    = max
228        ## Number of Q bins
229        self.nbins  = nbins
230        ## Smearing matrix
231        self._weights = None
232       
[a3f8d58]233    def _initialize_smearer(self):
[d00f8ff]234        """
[a3f8d58]235            Initialize the C++ smearer object.
236            This method HAS to be called before smearing
[d00f8ff]237        """
[a3f8d58]238        self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), self.min, self.max, self.nbins)
239        self._init_complete = True
[d00f8ff]240       
241class QSmearer(_QSmearer):
242    """
243        Adaptor for Gaussian Q smearing class and SANS data
244    """
245    def __init__(self, data1D):
246        """
247            Assumption: equally spaced bins of increasing q-values.
248           
249            @param data1D: data used to set the smearing parameters
250        """
251        # Initialization from parent class
252        super(QSmearer, self).__init__()
253       
[c0d9981]254        ## Resolution
[4fe4394]255        self.width = numpy.zeros(len(data1D.x))
[d00f8ff]256        if data1D.dx is not None and len(data1D.dx)==len(data1D.x):
[4fe4394]257            self.width = data1D.dx
[d00f8ff]258       
259        ## Number of Q bins
260        self.nbins = len(data1D.x)
261        ## Minimum Q
262        self.min = data1D.x[0]
263        ## Maximum
264        self.max = data1D.x[len(data1D.x)-1]       
265
266
267if __name__ == '__main__':
268    x = 0.001*numpy.arange(1,11)
269    y = 12.0-numpy.arange(1,11)
270    print x
271    #for i in range(10): print i, 0.001 + i*0.008/9.0
272    #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) ))
273
274   
275    s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010)
276    #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010)
277    s._compute_matrix()
278
279    sy = s(y)
280    print sy
281   
282    if True:
283        for i in range(10):
[fe2ade9]284            print x[i],y[i], sy[i]
[d00f8ff]285            #print q, ' : ', s.weight(q), s._compute_iq(q)
286            #print q, ' : ', s(q), s._compute_iq(q)
287            #s._compute_iq(q)
288
289
290
291
Note: See TracBrowser for help on using the repository browser.