[d00f8ff] | 1 | """ |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | See the license text in license.txt |
---|
| 7 | |
---|
[a3f8d58] | 8 | copyright 2009, University of Tennessee |
---|
[d00f8ff] | 9 | """ |
---|
[4fe4394] | 10 | |
---|
[a3f8d58] | 11 | import DataLoader.extensions.smearer as smearer |
---|
[d00f8ff] | 12 | import numpy |
---|
| 13 | import math |
---|
| 14 | import scipy.special |
---|
| 15 | |
---|
| 16 | def smear_selection(data1D): |
---|
| 17 | """ |
---|
| 18 | Creates the right type of smearer according |
---|
[4fe4394] | 19 | to the data. |
---|
| 20 | |
---|
| 21 | The canSAS format has a rule that either |
---|
| 22 | slit smearing data OR resolution smearing data |
---|
| 23 | is available. |
---|
| 24 | |
---|
| 25 | For the present purpose, we choose the one that |
---|
| 26 | has none-zero data. If both slit and resolution |
---|
| 27 | smearing arrays are filled with good data |
---|
| 28 | (which should not happen), then we choose the |
---|
| 29 | resolution smearing data. |
---|
| 30 | |
---|
| 31 | @param data1D: Data1D object |
---|
[d00f8ff] | 32 | """ |
---|
[4fe4394] | 33 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
| 34 | # object, just return None |
---|
[21d2eb0] | 35 | if data1D.__class__.__name__ != 'Data1D': |
---|
| 36 | return None |
---|
| 37 | |
---|
| 38 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl") and not hasattr(data1D, "dxw"): |
---|
[4fe4394] | 39 | return None |
---|
| 40 | |
---|
| 41 | # Look for resolution smearing data |
---|
| 42 | _found_resolution = False |
---|
| 43 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
| 44 | |
---|
| 45 | # Check that we have non-zero data |
---|
| 46 | if data1D.dx[0]>0.0: |
---|
| 47 | _found_resolution = True |
---|
[c7ac15e] | 48 | #print "_found_resolution",_found_resolution |
---|
| 49 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
[4fe4394] | 50 | # If we found resolution smearing data, return a QSmearer |
---|
| 51 | if _found_resolution == True: |
---|
| 52 | return QSmearer(data1D) |
---|
| 53 | |
---|
| 54 | # Look for slit smearing data |
---|
| 55 | _found_slit = False |
---|
| 56 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x) \ |
---|
| 57 | and data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
| 58 | |
---|
| 59 | # Check that we have non-zero data |
---|
| 60 | if data1D.dxl[0]>0.0 or data1D.dxw[0]>0.0: |
---|
| 61 | _found_slit = True |
---|
| 62 | |
---|
| 63 | # Sanity check: all data should be the same as a function of Q |
---|
| 64 | for item in data1D.dxl: |
---|
| 65 | if data1D.dxl[0] != item: |
---|
| 66 | _found_resolution = False |
---|
| 67 | break |
---|
| 68 | |
---|
| 69 | for item in data1D.dxw: |
---|
| 70 | if data1D.dxw[0] != item: |
---|
| 71 | _found_resolution = False |
---|
| 72 | break |
---|
| 73 | # If we found slit smearing data, return a slit smearer |
---|
| 74 | if _found_slit == True: |
---|
| 75 | return SlitSmearer(data1D) |
---|
| 76 | |
---|
| 77 | return None |
---|
| 78 | |
---|
[d00f8ff] | 79 | |
---|
| 80 | class _BaseSmearer(object): |
---|
| 81 | |
---|
| 82 | def __init__(self): |
---|
| 83 | self.nbins = 0 |
---|
| 84 | self._weights = None |
---|
[a3f8d58] | 85 | ## Internal flag to keep track of C++ smearer initialization |
---|
| 86 | self._init_complete = False |
---|
| 87 | self._smearer = None |
---|
| 88 | |
---|
| 89 | def __deepcopy__(self, memo={}): |
---|
| 90 | """ |
---|
| 91 | Return a valid copy of self. |
---|
| 92 | Avoid copying the _smearer C object and force a matrix recompute |
---|
| 93 | when the copy is used. |
---|
| 94 | """ |
---|
| 95 | result = _BaseSmearer() |
---|
| 96 | result.nbins = self.nbins |
---|
| 97 | return result |
---|
| 98 | |
---|
[d00f8ff] | 99 | |
---|
| 100 | def _compute_matrix(self): return NotImplemented |
---|
| 101 | |
---|
[a3f8d58] | 102 | def __call__(self, iq_in, first_bin=0, last_bin=None): |
---|
[d00f8ff] | 103 | """ |
---|
[a3f8d58] | 104 | Perform smearing |
---|
[d00f8ff] | 105 | """ |
---|
[a3f8d58] | 106 | # If this is the first time we call for smearing, |
---|
| 107 | # initialize the C++ smearer object first |
---|
| 108 | if not self._init_complete: |
---|
| 109 | self._initialize_smearer() |
---|
| 110 | |
---|
| 111 | # Get the max value for the last bin |
---|
| 112 | if last_bin is None or last_bin>=len(iq_in): |
---|
| 113 | last_bin = len(iq_in)-1 |
---|
| 114 | # Check that the first bin is positive |
---|
| 115 | if first_bin<0: |
---|
| 116 | first_bin = 0 |
---|
[d00f8ff] | 117 | |
---|
[a3f8d58] | 118 | # Sanity check |
---|
| 119 | if len(iq_in) != self.nbins: |
---|
| 120 | raise RuntimeError, "Invalid I(q) vector: inconsistent array length %d != %s" % (len(iq_in), str(self.nbins)) |
---|
| 121 | |
---|
| 122 | # Storage for smeared I(q) |
---|
| 123 | iq_out = numpy.zeros(self.nbins) |
---|
| 124 | smearer.smear(self._smearer, iq_in, iq_out, first_bin, last_bin) |
---|
| 125 | return iq_out |
---|
[d00f8ff] | 126 | |
---|
| 127 | class _SlitSmearer(_BaseSmearer): |
---|
| 128 | """ |
---|
| 129 | Slit smearing for I(q) array |
---|
| 130 | """ |
---|
| 131 | |
---|
| 132 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
| 133 | """ |
---|
| 134 | Initialization |
---|
| 135 | |
---|
| 136 | @param iq: I(q) array [cm-1] |
---|
| 137 | @param width: slit width [A-1] |
---|
| 138 | @param height: slit height [A-1] |
---|
| 139 | @param min: Q_min [A-1] |
---|
| 140 | @param max: Q_max [A-1] |
---|
| 141 | """ |
---|
[a3f8d58] | 142 | _BaseSmearer.__init__(self) |
---|
[d00f8ff] | 143 | ## Slit width in Q units |
---|
| 144 | self.width = width |
---|
| 145 | ## Slit height in Q units |
---|
| 146 | self.height = height |
---|
| 147 | ## Q_min (Min Q-value for I(q)) |
---|
| 148 | self.min = min |
---|
| 149 | ## Q_max (Max Q_value for I(q)) |
---|
| 150 | self.max = max |
---|
| 151 | ## Number of Q bins |
---|
| 152 | self.nbins = nbins |
---|
| 153 | ## Number of points used in the smearing computation |
---|
[c7ac15e] | 154 | self.npts = 10000 |
---|
[d00f8ff] | 155 | ## Smearing matrix |
---|
| 156 | self._weights = None |
---|
| 157 | |
---|
[a3f8d58] | 158 | def _initialize_smearer(self): |
---|
[d00f8ff] | 159 | """ |
---|
[a3f8d58] | 160 | Initialize the C++ smearer object. |
---|
| 161 | This method HAS to be called before smearing |
---|
[d00f8ff] | 162 | """ |
---|
[a3f8d58] | 163 | self._smearer = smearer.new_slit_smearer(self.width, self.height, self.min, self.max, self.nbins) |
---|
| 164 | self._init_complete = True |
---|
[fe2ade9] | 165 | |
---|
[d00f8ff] | 166 | |
---|
| 167 | class SlitSmearer(_SlitSmearer): |
---|
| 168 | """ |
---|
| 169 | Adaptor for slit smearing class and SANS data |
---|
| 170 | """ |
---|
| 171 | def __init__(self, data1D): |
---|
| 172 | """ |
---|
| 173 | Assumption: equally spaced bins of increasing q-values. |
---|
| 174 | |
---|
| 175 | @param data1D: data used to set the smearing parameters |
---|
| 176 | """ |
---|
| 177 | # Initialization from parent class |
---|
| 178 | super(SlitSmearer, self).__init__() |
---|
| 179 | |
---|
| 180 | ## Slit width |
---|
| 181 | self.width = 0 |
---|
| 182 | if data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
| 183 | self.width = data1D.dxw[0] |
---|
| 184 | # Sanity check |
---|
| 185 | for value in data1D.dxw: |
---|
| 186 | if value != self.width: |
---|
| 187 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
| 188 | |
---|
| 189 | ## Slit height |
---|
| 190 | self.height = 0 |
---|
| 191 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x): |
---|
| 192 | self.height = data1D.dxl[0] |
---|
| 193 | # Sanity check |
---|
| 194 | for value in data1D.dxl: |
---|
| 195 | if value != self.height: |
---|
| 196 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
| 197 | |
---|
| 198 | ## Number of Q bins |
---|
| 199 | self.nbins = len(data1D.x) |
---|
| 200 | ## Minimum Q |
---|
| 201 | self.min = data1D.x[0] |
---|
| 202 | ## Maximum |
---|
| 203 | self.max = data1D.x[len(data1D.x)-1] |
---|
| 204 | |
---|
[c7ac15e] | 205 | #print "nbin,npts",self.nbins,self.npts |
---|
[d00f8ff] | 206 | |
---|
| 207 | class _QSmearer(_BaseSmearer): |
---|
| 208 | """ |
---|
| 209 | Perform Gaussian Q smearing |
---|
| 210 | """ |
---|
| 211 | |
---|
| 212 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
| 213 | """ |
---|
| 214 | Initialization |
---|
| 215 | |
---|
| 216 | @param nbins: number of Q bins |
---|
[c0d9981] | 217 | @param width: array standard deviation in Q [A-1] |
---|
[d00f8ff] | 218 | @param min: Q_min [A-1] |
---|
| 219 | @param max: Q_max [A-1] |
---|
| 220 | """ |
---|
[a3f8d58] | 221 | _BaseSmearer.__init__(self) |
---|
[d00f8ff] | 222 | ## Standard deviation in Q [A-1] |
---|
| 223 | self.width = width |
---|
| 224 | ## Q_min (Min Q-value for I(q)) |
---|
| 225 | self.min = min |
---|
| 226 | ## Q_max (Max Q_value for I(q)) |
---|
| 227 | self.max = max |
---|
| 228 | ## Number of Q bins |
---|
| 229 | self.nbins = nbins |
---|
| 230 | ## Smearing matrix |
---|
| 231 | self._weights = None |
---|
| 232 | |
---|
[a3f8d58] | 233 | def _initialize_smearer(self): |
---|
[d00f8ff] | 234 | """ |
---|
[a3f8d58] | 235 | Initialize the C++ smearer object. |
---|
| 236 | This method HAS to be called before smearing |
---|
[d00f8ff] | 237 | """ |
---|
[a3f8d58] | 238 | self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), self.min, self.max, self.nbins) |
---|
| 239 | self._init_complete = True |
---|
[d00f8ff] | 240 | |
---|
| 241 | class QSmearer(_QSmearer): |
---|
| 242 | """ |
---|
| 243 | Adaptor for Gaussian Q smearing class and SANS data |
---|
| 244 | """ |
---|
| 245 | def __init__(self, data1D): |
---|
| 246 | """ |
---|
| 247 | Assumption: equally spaced bins of increasing q-values. |
---|
| 248 | |
---|
| 249 | @param data1D: data used to set the smearing parameters |
---|
| 250 | """ |
---|
| 251 | # Initialization from parent class |
---|
| 252 | super(QSmearer, self).__init__() |
---|
| 253 | |
---|
[c0d9981] | 254 | ## Resolution |
---|
[4fe4394] | 255 | self.width = numpy.zeros(len(data1D.x)) |
---|
[d00f8ff] | 256 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
[4fe4394] | 257 | self.width = data1D.dx |
---|
[d00f8ff] | 258 | |
---|
| 259 | ## Number of Q bins |
---|
| 260 | self.nbins = len(data1D.x) |
---|
| 261 | ## Minimum Q |
---|
| 262 | self.min = data1D.x[0] |
---|
| 263 | ## Maximum |
---|
| 264 | self.max = data1D.x[len(data1D.x)-1] |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | if __name__ == '__main__': |
---|
| 268 | x = 0.001*numpy.arange(1,11) |
---|
| 269 | y = 12.0-numpy.arange(1,11) |
---|
| 270 | print x |
---|
| 271 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 272 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
| 276 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
| 277 | s._compute_matrix() |
---|
| 278 | |
---|
| 279 | sy = s(y) |
---|
| 280 | print sy |
---|
| 281 | |
---|
| 282 | if True: |
---|
| 283 | for i in range(10): |
---|
[fe2ade9] | 284 | print x[i],y[i], sy[i] |
---|
[d00f8ff] | 285 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
| 286 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
| 287 | #s._compute_iq(q) |
---|
| 288 | |
---|
| 289 | |
---|
| 290 | |
---|
| 291 | |
---|