[d00f8ff] | 1 | """ |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | See the license text in license.txt |
---|
| 7 | |
---|
| 8 | copyright 2008, University of Tennessee |
---|
| 9 | """ |
---|
[4fe4394] | 10 | |
---|
| 11 | |
---|
[d00f8ff] | 12 | import numpy |
---|
| 13 | import math |
---|
| 14 | import scipy.special |
---|
| 15 | |
---|
| 16 | def smear_selection(data1D): |
---|
| 17 | """ |
---|
| 18 | Creates the right type of smearer according |
---|
[4fe4394] | 19 | to the data. |
---|
| 20 | |
---|
| 21 | The canSAS format has a rule that either |
---|
| 22 | slit smearing data OR resolution smearing data |
---|
| 23 | is available. |
---|
| 24 | |
---|
| 25 | For the present purpose, we choose the one that |
---|
| 26 | has none-zero data. If both slit and resolution |
---|
| 27 | smearing arrays are filled with good data |
---|
| 28 | (which should not happen), then we choose the |
---|
| 29 | resolution smearing data. |
---|
| 30 | |
---|
| 31 | @param data1D: Data1D object |
---|
[d00f8ff] | 32 | """ |
---|
[4fe4394] | 33 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
| 34 | # object, just return None |
---|
[21d2eb0] | 35 | if data1D.__class__.__name__ != 'Data1D': |
---|
| 36 | return None |
---|
| 37 | |
---|
| 38 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl") and not hasattr(data1D, "dxw"): |
---|
[4fe4394] | 39 | return None |
---|
| 40 | |
---|
| 41 | # Look for resolution smearing data |
---|
| 42 | _found_resolution = False |
---|
| 43 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
| 44 | |
---|
| 45 | # Check that we have non-zero data |
---|
| 46 | if data1D.dx[0]>0.0: |
---|
| 47 | _found_resolution = True |
---|
[21d2eb0] | 48 | print "_found_resolution",_found_resolution |
---|
[4fe4394] | 49 | # If we found resolution smearing data, return a QSmearer |
---|
| 50 | if _found_resolution == True: |
---|
| 51 | return QSmearer(data1D) |
---|
| 52 | |
---|
| 53 | # Look for slit smearing data |
---|
| 54 | _found_slit = False |
---|
| 55 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x) \ |
---|
| 56 | and data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
| 57 | |
---|
| 58 | # Check that we have non-zero data |
---|
| 59 | if data1D.dxl[0]>0.0 or data1D.dxw[0]>0.0: |
---|
| 60 | _found_slit = True |
---|
| 61 | |
---|
| 62 | # Sanity check: all data should be the same as a function of Q |
---|
| 63 | for item in data1D.dxl: |
---|
| 64 | if data1D.dxl[0] != item: |
---|
| 65 | _found_resolution = False |
---|
| 66 | break |
---|
| 67 | |
---|
| 68 | for item in data1D.dxw: |
---|
| 69 | if data1D.dxw[0] != item: |
---|
| 70 | _found_resolution = False |
---|
| 71 | break |
---|
| 72 | |
---|
| 73 | # If we found slit smearing data, return a slit smearer |
---|
| 74 | if _found_slit == True: |
---|
| 75 | return SlitSmearer(data1D) |
---|
| 76 | |
---|
| 77 | return None |
---|
| 78 | |
---|
[d00f8ff] | 79 | |
---|
| 80 | class _BaseSmearer(object): |
---|
| 81 | |
---|
| 82 | def __init__(self): |
---|
| 83 | self.nbins = 0 |
---|
| 84 | self._weights = None |
---|
| 85 | |
---|
| 86 | def _compute_matrix(self): return NotImplemented |
---|
| 87 | |
---|
| 88 | def __call__(self, iq): |
---|
| 89 | """ |
---|
| 90 | Return the smeared I(q) value at the given q. |
---|
| 91 | The smeared I(q) is computed using a predetermined |
---|
| 92 | smearing matrix for a particular binning. |
---|
| 93 | |
---|
| 94 | @param q: I(q) array |
---|
| 95 | @return: smeared I(q) |
---|
| 96 | """ |
---|
| 97 | # Sanity check |
---|
| 98 | if len(iq) != self.nbins: |
---|
| 99 | raise RuntimeError, "Invalid I(q) vector: inconsistent array length %s <> %s" % (len(iq), self.nbins) |
---|
| 100 | |
---|
| 101 | if self._weights == None: |
---|
| 102 | self._compute_matrix() |
---|
| 103 | |
---|
| 104 | iq_smeared = numpy.zeros(self.nbins) |
---|
| 105 | # Loop over q-values |
---|
| 106 | for q_i in range(self.nbins): |
---|
| 107 | sum = 0.0 |
---|
| 108 | counts = 0.0 |
---|
| 109 | |
---|
| 110 | for i in range(self.nbins): |
---|
[fe2ade9] | 111 | if iq[i]!=0 and self._weights[q_i][i]!=0: |
---|
| 112 | sum += iq[i] * self._weights[q_i][i] |
---|
| 113 | counts += self._weights[q_i][i] |
---|
| 114 | #print "i,iq[i],self._weights[q_i][i] ",i,iq[i],self._weights[q_i][i] |
---|
[0ec0405] | 115 | if counts == 0: |
---|
| 116 | iq_smeared[q_i] = 0 |
---|
| 117 | else: |
---|
| 118 | iq_smeared[q_i] = sum/counts |
---|
[fe2ade9] | 119 | #print "q_i,iq_smeared[q_i]",q_i,iq[i],iq_smeared[q_i] |
---|
| 120 | #print "iq[i],iq_smeared[q_i],sum,counts,self.nbins",iq[i], iq_smeared[q_i],sum,counts,self.nbins |
---|
[d00f8ff] | 121 | return iq_smeared |
---|
| 122 | |
---|
| 123 | class _SlitSmearer(_BaseSmearer): |
---|
| 124 | """ |
---|
| 125 | Slit smearing for I(q) array |
---|
| 126 | """ |
---|
| 127 | |
---|
| 128 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
| 129 | """ |
---|
| 130 | Initialization |
---|
| 131 | |
---|
| 132 | @param iq: I(q) array [cm-1] |
---|
| 133 | @param width: slit width [A-1] |
---|
| 134 | @param height: slit height [A-1] |
---|
| 135 | @param min: Q_min [A-1] |
---|
| 136 | @param max: Q_max [A-1] |
---|
| 137 | """ |
---|
| 138 | ## Slit width in Q units |
---|
| 139 | self.width = width |
---|
| 140 | ## Slit height in Q units |
---|
| 141 | self.height = height |
---|
| 142 | ## Q_min (Min Q-value for I(q)) |
---|
| 143 | self.min = min |
---|
| 144 | ## Q_max (Max Q_value for I(q)) |
---|
| 145 | self.max = max |
---|
| 146 | ## Number of Q bins |
---|
| 147 | self.nbins = nbins |
---|
| 148 | ## Number of points used in the smearing computation |
---|
| 149 | self.npts = 1000 |
---|
| 150 | ## Smearing matrix |
---|
| 151 | self._weights = None |
---|
| 152 | |
---|
| 153 | def _compute_matrix(self): |
---|
| 154 | """ |
---|
| 155 | Compute the smearing matrix for the current I(q) array |
---|
| 156 | """ |
---|
| 157 | weights = numpy.zeros([self.nbins, self.nbins]) |
---|
| 158 | |
---|
| 159 | # Loop over all q-values |
---|
| 160 | for i in range(self.nbins): |
---|
| 161 | q = self.min + i*(self.max-self.min)/float(self.nbins-1.0) |
---|
| 162 | |
---|
| 163 | # For each q-value, compute the weight of each other q-bin |
---|
| 164 | # in the I(q) array |
---|
[fe2ade9] | 165 | npts_h = self.nbins if self.height>0 else 1 #changed self.npts=>self.nbins |
---|
| 166 | npts_w = self.nbins if self.width>0 else 1 #changed self.npts=>self.nbins |
---|
[d00f8ff] | 167 | |
---|
| 168 | # If both height and width are great than zero, |
---|
| 169 | # modify the number of points in each direction so |
---|
| 170 | # that the total number of points is still what |
---|
| 171 | # the user would expect (downgrade resolution) |
---|
| 172 | if npts_h>1 and npts_w>1: |
---|
| 173 | npts_h = int(math.ceil(math.sqrt(self.npts))) |
---|
| 174 | npts_w = npts_h |
---|
| 175 | |
---|
| 176 | for k in range(npts_h): |
---|
| 177 | if npts_h==1: |
---|
| 178 | shift_h = 0 |
---|
| 179 | else: |
---|
| 180 | shift_h = self.height/(float(npts_h-1.0)) * k |
---|
| 181 | for j in range(npts_w): |
---|
| 182 | if npts_w==1: |
---|
| 183 | shift_w = 0 |
---|
| 184 | else: |
---|
| 185 | shift_w = self.width/(float(npts_w-1.0)) * j |
---|
| 186 | q_shifted = math.sqrt( ((q-shift_w)*(q-shift_w) + shift_h*shift_h) ) |
---|
| 187 | q_i = int(math.floor( (q_shifted-self.min)/((self.max-self.min)/(self.nbins -1.0)) )) |
---|
| 188 | |
---|
| 189 | # Skip the entries outside our I(q) range |
---|
| 190 | #TODO: be careful with edge effect |
---|
| 191 | if q_i<self.nbins: |
---|
| 192 | weights[i][q_i] = weights[i][q_i]+1.0 |
---|
[d594a81] | 193 | print "nbin,npts",self.nbins,self.npts |
---|
[fe2ade9] | 194 | |
---|
[d00f8ff] | 195 | self._weights = weights |
---|
| 196 | return self._weights |
---|
| 197 | |
---|
| 198 | class SlitSmearer(_SlitSmearer): |
---|
| 199 | """ |
---|
| 200 | Adaptor for slit smearing class and SANS data |
---|
| 201 | """ |
---|
| 202 | def __init__(self, data1D): |
---|
| 203 | """ |
---|
| 204 | Assumption: equally spaced bins of increasing q-values. |
---|
| 205 | |
---|
| 206 | @param data1D: data used to set the smearing parameters |
---|
| 207 | """ |
---|
| 208 | # Initialization from parent class |
---|
| 209 | super(SlitSmearer, self).__init__() |
---|
| 210 | |
---|
| 211 | ## Slit width |
---|
| 212 | self.width = 0 |
---|
| 213 | if data1D.dxw is not None and len(data1D.dxw)==len(data1D.x): |
---|
| 214 | self.width = data1D.dxw[0] |
---|
| 215 | # Sanity check |
---|
| 216 | for value in data1D.dxw: |
---|
| 217 | if value != self.width: |
---|
| 218 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
| 219 | |
---|
| 220 | ## Slit height |
---|
| 221 | self.height = 0 |
---|
| 222 | if data1D.dxl is not None and len(data1D.dxl)==len(data1D.x): |
---|
| 223 | self.height = data1D.dxl[0] |
---|
| 224 | # Sanity check |
---|
| 225 | for value in data1D.dxl: |
---|
| 226 | if value != self.height: |
---|
| 227 | raise RuntimeError, "Slit smearing parameters must be the same for all data" |
---|
| 228 | |
---|
| 229 | ## Number of Q bins |
---|
| 230 | self.nbins = len(data1D.x) |
---|
| 231 | ## Minimum Q |
---|
| 232 | self.min = data1D.x[0] |
---|
| 233 | ## Maximum |
---|
| 234 | self.max = data1D.x[len(data1D.x)-1] |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | class _QSmearer(_BaseSmearer): |
---|
| 238 | """ |
---|
| 239 | Perform Gaussian Q smearing |
---|
| 240 | """ |
---|
| 241 | |
---|
| 242 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
| 243 | """ |
---|
| 244 | Initialization |
---|
| 245 | |
---|
| 246 | @param nbins: number of Q bins |
---|
[c0d9981] | 247 | @param width: array standard deviation in Q [A-1] |
---|
[d00f8ff] | 248 | @param min: Q_min [A-1] |
---|
| 249 | @param max: Q_max [A-1] |
---|
| 250 | """ |
---|
| 251 | ## Standard deviation in Q [A-1] |
---|
| 252 | self.width = width |
---|
| 253 | ## Q_min (Min Q-value for I(q)) |
---|
| 254 | self.min = min |
---|
| 255 | ## Q_max (Max Q_value for I(q)) |
---|
| 256 | self.max = max |
---|
| 257 | ## Number of Q bins |
---|
| 258 | self.nbins = nbins |
---|
| 259 | ## Smearing matrix |
---|
| 260 | self._weights = None |
---|
| 261 | |
---|
| 262 | def _compute_matrix(self): |
---|
| 263 | """ |
---|
| 264 | Compute the smearing matrix for the current I(q) array |
---|
| 265 | """ |
---|
| 266 | weights = numpy.zeros([self.nbins, self.nbins]) |
---|
| 267 | |
---|
| 268 | # Loop over all q-values |
---|
| 269 | step = (self.max-self.min)/float(self.nbins-1.0) |
---|
| 270 | for i in range(self.nbins): |
---|
| 271 | q = self.min + i*step |
---|
| 272 | q_min = q - 0.5*step |
---|
| 273 | q_max = q + 0.5*step |
---|
| 274 | for j in range(self.nbins): |
---|
| 275 | q_j = self.min + j*step |
---|
| 276 | |
---|
| 277 | # Compute the fraction of the Gaussian contributing |
---|
| 278 | # to the q bin between q_min and q_max |
---|
[fe2ade9] | 279 | #value = math.exp(-math.pow((q_max-q_j),2)/(2*math.pow(self.width[j],2) )) |
---|
| 280 | #value += math.exp(-math.pow((q_max-q_j),2)/(2*math.pow(self.width[j],2) )) |
---|
[4fe4394] | 281 | value = scipy.special.erf( (q_max-q_j)/(math.sqrt(2.0)*self.width[j]) ) |
---|
| 282 | value -=scipy.special.erf( (q_min-q_j)/(math.sqrt(2.0)*self.width[j]) ) |
---|
[d00f8ff] | 283 | weights[i][j] += value |
---|
| 284 | |
---|
| 285 | self._weights = weights |
---|
| 286 | return self._weights |
---|
| 287 | |
---|
| 288 | class QSmearer(_QSmearer): |
---|
| 289 | """ |
---|
| 290 | Adaptor for Gaussian Q smearing class and SANS data |
---|
| 291 | """ |
---|
| 292 | def __init__(self, data1D): |
---|
| 293 | """ |
---|
| 294 | Assumption: equally spaced bins of increasing q-values. |
---|
| 295 | |
---|
| 296 | @param data1D: data used to set the smearing parameters |
---|
| 297 | """ |
---|
| 298 | # Initialization from parent class |
---|
| 299 | super(QSmearer, self).__init__() |
---|
| 300 | |
---|
[c0d9981] | 301 | ## Resolution |
---|
[4fe4394] | 302 | self.width = numpy.zeros(len(data1D.x)) |
---|
[d00f8ff] | 303 | if data1D.dx is not None and len(data1D.dx)==len(data1D.x): |
---|
[4fe4394] | 304 | self.width = data1D.dx |
---|
[d00f8ff] | 305 | |
---|
| 306 | ## Number of Q bins |
---|
| 307 | self.nbins = len(data1D.x) |
---|
| 308 | ## Minimum Q |
---|
| 309 | self.min = data1D.x[0] |
---|
| 310 | ## Maximum |
---|
| 311 | self.max = data1D.x[len(data1D.x)-1] |
---|
| 312 | |
---|
| 313 | |
---|
| 314 | if __name__ == '__main__': |
---|
| 315 | x = 0.001*numpy.arange(1,11) |
---|
| 316 | y = 12.0-numpy.arange(1,11) |
---|
| 317 | print x |
---|
| 318 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 319 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
| 323 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
| 324 | s._compute_matrix() |
---|
| 325 | |
---|
| 326 | sy = s(y) |
---|
| 327 | print sy |
---|
| 328 | |
---|
| 329 | if True: |
---|
| 330 | for i in range(10): |
---|
[fe2ade9] | 331 | print x[i],y[i], sy[i] |
---|
[d00f8ff] | 332 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
| 333 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
| 334 | #s._compute_iq(q) |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | |
---|
| 338 | |
---|