[d00f8ff] | 1 | |
---|
[0997158f] | 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2008, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
[d00f8ff] | 9 | import numpy |
---|
[a7a5886] | 10 | #import math |
---|
| 11 | import logging |
---|
| 12 | import sys |
---|
| 13 | import DataLoader.extensions.smearer as smearer |
---|
[f72333f] | 14 | from DataLoader.smearing_2d import Smearer2D |
---|
[d00f8ff] | 15 | |
---|
| 16 | def smear_selection(data1D): |
---|
| 17 | """ |
---|
[0997158f] | 18 | Creates the right type of smearer according |
---|
| 19 | to the data. |
---|
| 20 | |
---|
| 21 | The canSAS format has a rule that either |
---|
| 22 | slit smearing data OR resolution smearing data |
---|
| 23 | is available. |
---|
[4fe4394] | 24 | |
---|
[0997158f] | 25 | For the present purpose, we choose the one that |
---|
| 26 | has none-zero data. If both slit and resolution |
---|
| 27 | smearing arrays are filled with good data |
---|
| 28 | (which should not happen), then we choose the |
---|
| 29 | resolution smearing data. |
---|
| 30 | |
---|
| 31 | :param data1D: Data1D object |
---|
[d00f8ff] | 32 | """ |
---|
[4fe4394] | 33 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
| 34 | # object, just return None |
---|
[023c8e2] | 35 | if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
[f72333f] | 36 | if data1D == None: |
---|
| 37 | return None |
---|
| 38 | elif data1D.dqx_data == None or data1D.dqy_data == None: |
---|
| 39 | return None |
---|
| 40 | return Smearer2D(data1D) |
---|
[21d2eb0] | 41 | |
---|
[a7a5886] | 42 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ |
---|
| 43 | and not hasattr(data1D, "dxw"): |
---|
[4fe4394] | 44 | return None |
---|
| 45 | |
---|
| 46 | # Look for resolution smearing data |
---|
| 47 | _found_resolution = False |
---|
[a7a5886] | 48 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
[4fe4394] | 49 | |
---|
| 50 | # Check that we have non-zero data |
---|
[a7a5886] | 51 | if data1D.dx[0] > 0.0: |
---|
[4fe4394] | 52 | _found_resolution = True |
---|
[c7ac15e] | 53 | #print "_found_resolution",_found_resolution |
---|
| 54 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
[4fe4394] | 55 | # If we found resolution smearing data, return a QSmearer |
---|
| 56 | if _found_resolution == True: |
---|
| 57 | return QSmearer(data1D) |
---|
| 58 | |
---|
| 59 | # Look for slit smearing data |
---|
| 60 | _found_slit = False |
---|
[a7a5886] | 61 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ |
---|
| 62 | and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
[4fe4394] | 63 | |
---|
| 64 | # Check that we have non-zero data |
---|
[a7a5886] | 65 | if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: |
---|
[4fe4394] | 66 | _found_slit = True |
---|
| 67 | |
---|
| 68 | # Sanity check: all data should be the same as a function of Q |
---|
| 69 | for item in data1D.dxl: |
---|
| 70 | if data1D.dxl[0] != item: |
---|
| 71 | _found_resolution = False |
---|
| 72 | break |
---|
| 73 | |
---|
| 74 | for item in data1D.dxw: |
---|
| 75 | if data1D.dxw[0] != item: |
---|
| 76 | _found_resolution = False |
---|
| 77 | break |
---|
| 78 | # If we found slit smearing data, return a slit smearer |
---|
| 79 | if _found_slit == True: |
---|
| 80 | return SlitSmearer(data1D) |
---|
| 81 | return None |
---|
| 82 | |
---|
[d00f8ff] | 83 | |
---|
| 84 | class _BaseSmearer(object): |
---|
| 85 | |
---|
| 86 | def __init__(self): |
---|
| 87 | self.nbins = 0 |
---|
| 88 | self._weights = None |
---|
[a3f8d58] | 89 | ## Internal flag to keep track of C++ smearer initialization |
---|
| 90 | self._init_complete = False |
---|
| 91 | self._smearer = None |
---|
| 92 | |
---|
| 93 | def __deepcopy__(self, memo={}): |
---|
| 94 | """ |
---|
[0997158f] | 95 | Return a valid copy of self. |
---|
| 96 | Avoid copying the _smearer C object and force a matrix recompute |
---|
| 97 | when the copy is used. |
---|
[a3f8d58] | 98 | """ |
---|
| 99 | result = _BaseSmearer() |
---|
| 100 | result.nbins = self.nbins |
---|
| 101 | return result |
---|
| 102 | |
---|
[a7a5886] | 103 | def _compute_matrix(self): |
---|
| 104 | """ |
---|
| 105 | """ |
---|
| 106 | return NotImplemented |
---|
[d00f8ff] | 107 | |
---|
[5859862] | 108 | def get_bin_range(self, q_min=None, q_max=None): |
---|
| 109 | """ |
---|
[0997158f] | 110 | |
---|
| 111 | :param q_min: minimum q-value to smear |
---|
| 112 | :param q_max: maximum q-value to smear |
---|
| 113 | |
---|
[5859862] | 114 | """ |
---|
[65883cf] | 115 | # If this is the first time we call for smearing, |
---|
| 116 | # initialize the C++ smearer object first |
---|
| 117 | if not self._init_complete: |
---|
| 118 | self._initialize_smearer() |
---|
[5859862] | 119 | if q_min == None: |
---|
| 120 | q_min = self.min |
---|
| 121 | if q_max == None: |
---|
| 122 | q_max = self.max |
---|
[a7a5886] | 123 | _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, |
---|
| 124 | q_max) |
---|
[5859862] | 125 | _first_bin = None |
---|
| 126 | _last_bin = None |
---|
| 127 | |
---|
[a7a5886] | 128 | step = (self.max - self.min) / (self.nbins - 1.0) |
---|
[65883cf] | 129 | try: |
---|
| 130 | for i in range(self.nbins): |
---|
| 131 | q_i = smearer.get_q(self._smearer, i) |
---|
| 132 | if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): |
---|
| 133 | # Identify first and last bin |
---|
| 134 | if _first_bin is None: |
---|
| 135 | _first_bin = i |
---|
| 136 | else: |
---|
| 137 | _last_bin = i |
---|
| 138 | except: |
---|
[a7a5886] | 139 | msg = "_BaseSmearer.get_bin_range: " |
---|
| 140 | msg += " error getting range\n %s" % sys.exc_value |
---|
| 141 | raise RuntimeError, msg |
---|
[5859862] | 142 | |
---|
| 143 | return _first_bin, _last_bin |
---|
| 144 | |
---|
[a3f8d58] | 145 | def __call__(self, iq_in, first_bin=0, last_bin=None): |
---|
[d00f8ff] | 146 | """ |
---|
[0997158f] | 147 | Perform smearing |
---|
[d00f8ff] | 148 | """ |
---|
[a3f8d58] | 149 | # If this is the first time we call for smearing, |
---|
| 150 | # initialize the C++ smearer object first |
---|
| 151 | if not self._init_complete: |
---|
| 152 | self._initialize_smearer() |
---|
| 153 | |
---|
| 154 | # Get the max value for the last bin |
---|
[a7a5886] | 155 | if last_bin is None or last_bin >= len(iq_in): |
---|
| 156 | last_bin = len(iq_in) - 1 |
---|
[a3f8d58] | 157 | # Check that the first bin is positive |
---|
[a7a5886] | 158 | if first_bin < 0: |
---|
[a3f8d58] | 159 | first_bin = 0 |
---|
[d00f8ff] | 160 | |
---|
[a3f8d58] | 161 | # Sanity check |
---|
| 162 | if len(iq_in) != self.nbins: |
---|
[a7a5886] | 163 | msg = "Invalid I(q) vector: inconsistent array " |
---|
| 164 | msg += " length %d != %s" % (len(iq_in), str(self.nbins)) |
---|
| 165 | raise RuntimeError, msg |
---|
[a3f8d58] | 166 | |
---|
| 167 | # Storage for smeared I(q) |
---|
| 168 | iq_out = numpy.zeros(self.nbins) |
---|
[a7a5886] | 169 | smear_output = smearer.smear(self._smearer, iq_in, iq_out, |
---|
| 170 | first_bin, last_bin) |
---|
[65883cf] | 171 | if smear_output < 0: |
---|
[a7a5886] | 172 | msg = "_BaseSmearer: could not smear, code = %g" % smear_output |
---|
| 173 | raise RuntimeError, msg |
---|
[a3f8d58] | 174 | return iq_out |
---|
[d00f8ff] | 175 | |
---|
[a7a5886] | 176 | def _initialize_smearer(self): |
---|
| 177 | """ |
---|
| 178 | """ |
---|
| 179 | return NotImplemented |
---|
| 180 | |
---|
[d00f8ff] | 181 | class _SlitSmearer(_BaseSmearer): |
---|
| 182 | """ |
---|
[0997158f] | 183 | Slit smearing for I(q) array |
---|
[d00f8ff] | 184 | """ |
---|
| 185 | |
---|
| 186 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
| 187 | """ |
---|
[0997158f] | 188 | Initialization |
---|
[d00f8ff] | 189 | |
---|
[0997158f] | 190 | :param iq: I(q) array [cm-1] |
---|
| 191 | :param width: slit width [A-1] |
---|
| 192 | :param height: slit height [A-1] |
---|
| 193 | :param min: Q_min [A-1] |
---|
| 194 | :param max: Q_max [A-1] |
---|
| 195 | |
---|
[d00f8ff] | 196 | """ |
---|
[a3f8d58] | 197 | _BaseSmearer.__init__(self) |
---|
[d00f8ff] | 198 | ## Slit width in Q units |
---|
| 199 | self.width = width |
---|
| 200 | ## Slit height in Q units |
---|
| 201 | self.height = height |
---|
| 202 | ## Q_min (Min Q-value for I(q)) |
---|
| 203 | self.min = min |
---|
| 204 | ## Q_max (Max Q_value for I(q)) |
---|
| 205 | self.max = max |
---|
| 206 | ## Number of Q bins |
---|
| 207 | self.nbins = nbins |
---|
| 208 | ## Number of points used in the smearing computation |
---|
[4834cba] | 209 | self.npts = 1000 |
---|
[d00f8ff] | 210 | ## Smearing matrix |
---|
| 211 | self._weights = None |
---|
[65883cf] | 212 | self.qvalues = None |
---|
[d00f8ff] | 213 | |
---|
[a3f8d58] | 214 | def _initialize_smearer(self): |
---|
[d00f8ff] | 215 | """ |
---|
[0997158f] | 216 | Initialize the C++ smearer object. |
---|
| 217 | This method HAS to be called before smearing |
---|
[d00f8ff] | 218 | """ |
---|
[a7a5886] | 219 | #self._smearer = smearer.new_slit_smearer(self.width, |
---|
| 220 | # self.height, self.min, self.max, self.nbins) |
---|
| 221 | self._smearer = smearer.new_slit_smearer_with_q(self.width, |
---|
| 222 | self.height, self.qvalues) |
---|
[a3f8d58] | 223 | self._init_complete = True |
---|
[fe2ade9] | 224 | |
---|
[5859862] | 225 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 226 | """ |
---|
[0997158f] | 227 | Determine the range needed in unsmeared-Q to cover |
---|
| 228 | the smeared Q range |
---|
[5859862] | 229 | """ |
---|
| 230 | # Range used for input to smearing |
---|
| 231 | _qmin_unsmeared = q_min |
---|
| 232 | _qmax_unsmeared = q_max |
---|
| 233 | try: |
---|
| 234 | _qmin_unsmeared = self.min |
---|
| 235 | _qmax_unsmeared = self.max |
---|
| 236 | except: |
---|
| 237 | logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 238 | return _qmin_unsmeared, _qmax_unsmeared |
---|
[d00f8ff] | 239 | |
---|
| 240 | class SlitSmearer(_SlitSmearer): |
---|
| 241 | """ |
---|
[0997158f] | 242 | Adaptor for slit smearing class and SANS data |
---|
[d00f8ff] | 243 | """ |
---|
| 244 | def __init__(self, data1D): |
---|
| 245 | """ |
---|
[0997158f] | 246 | Assumption: equally spaced bins of increasing q-values. |
---|
| 247 | |
---|
| 248 | :param data1D: data used to set the smearing parameters |
---|
[d00f8ff] | 249 | """ |
---|
| 250 | # Initialization from parent class |
---|
| 251 | super(SlitSmearer, self).__init__() |
---|
| 252 | |
---|
| 253 | ## Slit width |
---|
| 254 | self.width = 0 |
---|
[a7a5886] | 255 | if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
[d00f8ff] | 256 | self.width = data1D.dxw[0] |
---|
| 257 | # Sanity check |
---|
| 258 | for value in data1D.dxw: |
---|
| 259 | if value != self.width: |
---|
[a7a5886] | 260 | msg = "Slit smearing parameters must " |
---|
| 261 | msg += " be the same for all data" |
---|
| 262 | raise RuntimeError, msg |
---|
[d00f8ff] | 263 | ## Slit height |
---|
| 264 | self.height = 0 |
---|
[a7a5886] | 265 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): |
---|
[d00f8ff] | 266 | self.height = data1D.dxl[0] |
---|
| 267 | # Sanity check |
---|
| 268 | for value in data1D.dxl: |
---|
| 269 | if value != self.height: |
---|
[a7a5886] | 270 | msg = "Slit smearing parameters must be" |
---|
| 271 | msg += " the same for all data" |
---|
| 272 | raise RuntimeError, msg |
---|
[d00f8ff] | 273 | |
---|
| 274 | ## Number of Q bins |
---|
| 275 | self.nbins = len(data1D.x) |
---|
| 276 | ## Minimum Q |
---|
[5859862] | 277 | self.min = min(data1D.x) |
---|
[d00f8ff] | 278 | ## Maximum |
---|
[5859862] | 279 | self.max = max(data1D.x) |
---|
| 280 | ## Q-values |
---|
| 281 | self.qvalues = data1D.x |
---|
| 282 | |
---|
[d00f8ff] | 283 | |
---|
| 284 | class _QSmearer(_BaseSmearer): |
---|
| 285 | """ |
---|
[0997158f] | 286 | Perform Gaussian Q smearing |
---|
[d00f8ff] | 287 | """ |
---|
| 288 | |
---|
| 289 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
| 290 | """ |
---|
[0997158f] | 291 | Initialization |
---|
| 292 | |
---|
| 293 | :param nbins: number of Q bins |
---|
| 294 | :param width: array standard deviation in Q [A-1] |
---|
| 295 | :param min: Q_min [A-1] |
---|
| 296 | :param max: Q_max [A-1] |
---|
[d00f8ff] | 297 | """ |
---|
[a3f8d58] | 298 | _BaseSmearer.__init__(self) |
---|
[d00f8ff] | 299 | ## Standard deviation in Q [A-1] |
---|
[a7a5886] | 300 | self.width = width |
---|
[d00f8ff] | 301 | ## Q_min (Min Q-value for I(q)) |
---|
[a7a5886] | 302 | self.min = min |
---|
[d00f8ff] | 303 | ## Q_max (Max Q_value for I(q)) |
---|
[a7a5886] | 304 | self.max = max |
---|
[d00f8ff] | 305 | ## Number of Q bins |
---|
[a7a5886] | 306 | self.nbins = nbins |
---|
[d00f8ff] | 307 | ## Smearing matrix |
---|
| 308 | self._weights = None |
---|
[65883cf] | 309 | self.qvalues = None |
---|
[d00f8ff] | 310 | |
---|
[a3f8d58] | 311 | def _initialize_smearer(self): |
---|
[d00f8ff] | 312 | """ |
---|
[0997158f] | 313 | Initialize the C++ smearer object. |
---|
| 314 | This method HAS to be called before smearing |
---|
[d00f8ff] | 315 | """ |
---|
[a7a5886] | 316 | #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), |
---|
| 317 | # self.min, self.max, self.nbins) |
---|
| 318 | self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), |
---|
| 319 | self.qvalues) |
---|
[a3f8d58] | 320 | self._init_complete = True |
---|
[d00f8ff] | 321 | |
---|
[5859862] | 322 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 323 | """ |
---|
[0997158f] | 324 | Determine the range needed in unsmeared-Q to cover |
---|
| 325 | the smeared Q range |
---|
| 326 | Take 3 sigmas as the offset between smeared and unsmeared space |
---|
[5859862] | 327 | """ |
---|
| 328 | # Range used for input to smearing |
---|
| 329 | _qmin_unsmeared = q_min |
---|
| 330 | _qmax_unsmeared = q_max |
---|
| 331 | try: |
---|
[a7a5886] | 332 | offset = 3.0 * max(self.width) |
---|
| 333 | _qmin_unsmeared = max([self.min, q_min - offset]) |
---|
| 334 | _qmax_unsmeared = min([self.max, q_max + offset]) |
---|
[5859862] | 335 | except: |
---|
| 336 | logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 337 | return _qmin_unsmeared, _qmax_unsmeared |
---|
| 338 | |
---|
[0997158f] | 339 | |
---|
[d00f8ff] | 340 | class QSmearer(_QSmearer): |
---|
| 341 | """ |
---|
[0997158f] | 342 | Adaptor for Gaussian Q smearing class and SANS data |
---|
[d00f8ff] | 343 | """ |
---|
| 344 | def __init__(self, data1D): |
---|
| 345 | """ |
---|
[0997158f] | 346 | Assumption: equally spaced bins of increasing q-values. |
---|
| 347 | |
---|
| 348 | :param data1D: data used to set the smearing parameters |
---|
[d00f8ff] | 349 | """ |
---|
| 350 | # Initialization from parent class |
---|
| 351 | super(QSmearer, self).__init__() |
---|
| 352 | |
---|
[c0d9981] | 353 | ## Resolution |
---|
[4fe4394] | 354 | self.width = numpy.zeros(len(data1D.x)) |
---|
[a7a5886] | 355 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
[4fe4394] | 356 | self.width = data1D.dx |
---|
[d00f8ff] | 357 | |
---|
| 358 | ## Number of Q bins |
---|
| 359 | self.nbins = len(data1D.x) |
---|
| 360 | ## Minimum Q |
---|
[5859862] | 361 | self.min = min(data1D.x) |
---|
[d00f8ff] | 362 | ## Maximum |
---|
[5859862] | 363 | self.max = max(data1D.x) |
---|
| 364 | ## Q-values |
---|
| 365 | self.qvalues = data1D.x |
---|
[d00f8ff] | 366 | |
---|
| 367 | |
---|
| 368 | if __name__ == '__main__': |
---|
[a7a5886] | 369 | x = 0.001 * numpy.arange(1, 11) |
---|
| 370 | y = 12.0 - numpy.arange(1, 11) |
---|
[d00f8ff] | 371 | print x |
---|
| 372 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 373 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 374 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
| 375 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
| 376 | s._compute_matrix() |
---|
| 377 | |
---|
| 378 | sy = s(y) |
---|
| 379 | print sy |
---|
| 380 | |
---|
| 381 | if True: |
---|
| 382 | for i in range(10): |
---|
[a7a5886] | 383 | print x[i], y[i], sy[i] |
---|
[d00f8ff] | 384 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
| 385 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
| 386 | #s._compute_iq(q) |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | |
---|