[76e2369] | 1 | """ |
---|
[f8d0ee7] | 2 | Data manipulations for 2D data sets. |
---|
| 3 | Using the meta data information, various types of averaging |
---|
| 4 | are performed in Q-space |
---|
[76e2369] | 5 | """ |
---|
| 6 | |
---|
| 7 | """ |
---|
| 8 | This software was developed by the University of Tennessee as part of the |
---|
| 9 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 10 | project funded by the US National Science Foundation. |
---|
| 11 | |
---|
| 12 | See the license text in license.txt |
---|
| 13 | |
---|
| 14 | copyright 2008, University of Tennessee |
---|
| 15 | """ |
---|
| 16 | #TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
| 17 | |
---|
| 18 | from data_info import plottable_2D, Data1D |
---|
| 19 | import math |
---|
| 20 | import numpy |
---|
| 21 | |
---|
| 22 | def get_q(dx, dy, det_dist, wavelength): |
---|
| 23 | """ |
---|
| 24 | @param dx: x-distance from beam center [mm] |
---|
| 25 | @param dy: y-distance from beam center [mm] |
---|
| 26 | @return: q-value at the given position |
---|
| 27 | """ |
---|
| 28 | # Distance from beam center in the plane of detector |
---|
| 29 | plane_dist = math.sqrt(dx*dx + dy*dy) |
---|
| 30 | # Half of the scattering angle |
---|
| 31 | theta = 0.5*math.atan(plane_dist/det_dist) |
---|
| 32 | return (4.0*math.pi/wavelength)*math.sin(theta) |
---|
[acb37d9] | 33 | |
---|
| 34 | def get_q_compo(dx, dy, det_dist, wavelength,compo=None): |
---|
| 35 | #This reduces tiny error at very large q. |
---|
| 36 | #Implementation of this func is not started yet.<--ToDo |
---|
| 37 | if dy==0: |
---|
| 38 | if dx>=0: |
---|
| 39 | angle_xy=0 |
---|
| 40 | else: |
---|
| 41 | angle_xy=math.pi |
---|
| 42 | else: |
---|
| 43 | angle_xy=math.atan(dx/dy) |
---|
| 44 | |
---|
| 45 | if compo=="x": |
---|
| 46 | out=get_q(dx, dy, det_dist, wavelength)*cos(angle_xy) |
---|
| 47 | elif compo=="y": |
---|
| 48 | out=get_q(dx, dy, det_dist, wavelength)*sin(angle_xy) |
---|
| 49 | else: |
---|
| 50 | out=get_q(dx, dy, det_dist, wavelength) |
---|
| 51 | return out |
---|
[095ab1b] | 52 | |
---|
| 53 | def flip_phi(phi): |
---|
| 54 | """ |
---|
| 55 | Correct phi to within the 0 <= to <= 2pi range |
---|
| 56 | @return: phi in >=0 and <=2Pi |
---|
| 57 | """ |
---|
| 58 | Pi = math.pi |
---|
| 59 | if phi < 0: |
---|
| 60 | phi_out = phi + 2*Pi |
---|
| 61 | elif phi > 2*Pi: |
---|
| 62 | phi_out = phi - 2*Pi |
---|
| 63 | else: |
---|
| 64 | phi_out = phi |
---|
| 65 | return phi_out |
---|
| 66 | |
---|
| 67 | def reader2D_converter(data2d=None): |
---|
| 68 | """ |
---|
| 69 | convert old 2d format opened by IhorReader or danse_reader to new Data2D format |
---|
| 70 | @param data2d: 2d array of Data2D object |
---|
| 71 | @return: 1d arrays of Data2D object |
---|
| 72 | """ |
---|
| 73 | if data2d.data==None or data2d.x_bins==None or data2d.y_bins==None: |
---|
| 74 | raise ValueError,"Can't convert this data: data=None..." |
---|
[76e2369] | 75 | |
---|
[095ab1b] | 76 | from DataLoader.data_info import Data2D |
---|
| 77 | |
---|
| 78 | new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins),1)) |
---|
| 79 | new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins),1)) |
---|
| 80 | new_y = new_y.swapaxes(0,1) |
---|
| 81 | |
---|
| 82 | new_data = data2d.data.flatten() |
---|
| 83 | qx_data = new_x.flatten() |
---|
| 84 | qy_data = new_y.flatten() |
---|
| 85 | q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) |
---|
[dde2d44] | 86 | if data2d.err_data == None or numpy.any(data2d.err_data<=0): |
---|
[f265927] | 87 | new_err_data = numpy.sqrt(numpy.abs(new_data)) |
---|
[dde2d44] | 88 | else: |
---|
| 89 | new_err_data = data2d.err_data.flatten() |
---|
[095ab1b] | 90 | mask = numpy.ones(len(new_data), dtype = bool) |
---|
| 91 | |
---|
| 92 | output = Data2D() |
---|
| 93 | output = data2d |
---|
| 94 | output.data = new_data |
---|
| 95 | output.err_data = new_err_data |
---|
| 96 | output.qx_data = qx_data |
---|
| 97 | output.qy_data = qy_data |
---|
| 98 | output.q_data = q_data |
---|
| 99 | output.mask = mask |
---|
| 100 | |
---|
| 101 | return output |
---|
| 102 | |
---|
[70975f3] | 103 | class _Slab(object): |
---|
| 104 | """ |
---|
| 105 | Compute average I(Q) for a region of interest |
---|
| 106 | """ |
---|
| 107 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001): |
---|
| 108 | # Minimum Qx value [A-1] |
---|
| 109 | self.x_min = x_min |
---|
| 110 | # Maximum Qx value [A-1] |
---|
| 111 | self.x_max = x_max |
---|
| 112 | # Minimum Qy value [A-1] |
---|
| 113 | self.y_min = y_min |
---|
| 114 | # Maximum Qy value [A-1] |
---|
| 115 | self.y_max = y_max |
---|
| 116 | # Bin width (step size) [A-1] |
---|
| 117 | self.bin_width = bin_width |
---|
| 118 | # If True, I(|Q|) will be return, otherwise, negative q-values are allowed |
---|
| 119 | self.fold = False |
---|
| 120 | |
---|
| 121 | def __call__(self, data2D): return NotImplemented |
---|
| 122 | |
---|
| 123 | def _avg(self, data2D, maj): |
---|
| 124 | """ |
---|
| 125 | Compute average I(Q_maj) for a region of interest. |
---|
| 126 | The major axis is defined as the axis of Q_maj. |
---|
| 127 | The minor axis is the axis that we average over. |
---|
| 128 | |
---|
| 129 | @param data2D: Data2D object |
---|
| 130 | @param maj_min: min value on the major axis |
---|
| 131 | @return: Data1D object |
---|
| 132 | """ |
---|
| 133 | if len(data2D.detector) != 1: |
---|
| 134 | raise RuntimeError, "_Slab._avg: invalid number of detectors: %g" % len(data2D.detector) |
---|
| 135 | |
---|
[095ab1b] | 136 | # Get data |
---|
[c6f95bb] | 137 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 138 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 139 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 140 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 141 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 142 | |
---|
[70975f3] | 143 | # Build array of Q intervals |
---|
| 144 | if maj=='x': |
---|
[095ab1b] | 145 | if self.fold: x_min = 0 |
---|
| 146 | else: x_min = self.x_min |
---|
| 147 | nbins = int(math.ceil((self.x_max-x_min)/self.bin_width)) |
---|
| 148 | qbins = self.bin_width*numpy.arange(nbins)+ x_min |
---|
[70975f3] | 149 | elif maj=='y': |
---|
[095ab1b] | 150 | if self.fold: y_min = 0 |
---|
| 151 | else: y_min = self.y_min |
---|
| 152 | nbins = int(math.ceil((self.y_max-y_min)/self.bin_width)) |
---|
| 153 | qbins = self.bin_width*numpy.arange(nbins)+ y_min |
---|
[70975f3] | 154 | else: |
---|
| 155 | raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj) |
---|
| 156 | |
---|
| 157 | x = numpy.zeros(nbins) |
---|
| 158 | y = numpy.zeros(nbins) |
---|
| 159 | err_y = numpy.zeros(nbins) |
---|
| 160 | y_counts = numpy.zeros(nbins) |
---|
| 161 | |
---|
[095ab1b] | 162 | # Average pixelsize in q space |
---|
| 163 | for npts in range(len(data)): |
---|
| 164 | # default frac |
---|
| 165 | frac_x = 0 |
---|
| 166 | frac_y = 0 |
---|
| 167 | # get ROI |
---|
| 168 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
| 169 | frac_x = 1 |
---|
| 170 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
| 171 | frac_y = 1 |
---|
| 172 | |
---|
| 173 | frac = frac_x * frac_y |
---|
| 174 | |
---|
| 175 | if frac == 0: continue |
---|
[76e2369] | 176 | |
---|
[095ab1b] | 177 | # binning: find axis of q |
---|
| 178 | if maj=='x': |
---|
| 179 | q_value = qx_data[npts] |
---|
| 180 | min = x_min |
---|
| 181 | if maj=='y': |
---|
| 182 | q_value = qy_data[npts] |
---|
| 183 | min = y_min |
---|
| 184 | if self.fold and q_value<0: q_value = -q_value |
---|
| 185 | |
---|
| 186 | # bin |
---|
| 187 | i_q = int(math.ceil((q_value-min)/self.bin_width)) - 1 |
---|
| 188 | |
---|
| 189 | # skip outside of max bins |
---|
| 190 | if i_q<0 or i_q>=nbins: continue |
---|
| 191 | |
---|
| 192 | # give it full weight |
---|
| 193 | #frac = 1 |
---|
| 194 | |
---|
| 195 | #TODO: find better definition of x[i_q] based on q_data |
---|
| 196 | x[i_q] = min +(i_q+1)*self.bin_width/2.0 |
---|
| 197 | y[i_q] += frac * data[npts] |
---|
| 198 | |
---|
| 199 | if err_data == None or err_data[npts]==0.0: |
---|
[c6f95bb] | 200 | if data[npts] <0: data[npts] = -data[npts] |
---|
| 201 | err_y[i_q] += frac * frac * data[npts] |
---|
[095ab1b] | 202 | else: |
---|
| 203 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
| 204 | y_counts[i_q] += frac |
---|
[8ba103f] | 205 | |
---|
[095ab1b] | 206 | # Average the sums |
---|
| 207 | for n in range(nbins): |
---|
| 208 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 209 | |
---|
| 210 | err_y = err_y/y_counts |
---|
| 211 | y = y/y_counts |
---|
[70975f3] | 212 | |
---|
[095ab1b] | 213 | idx = (numpy.isfinite(y)& numpy.isfinite(x)) |
---|
| 214 | |
---|
| 215 | if not idx.any(): |
---|
| 216 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 217 | elif len(y[idx])!= nbins: |
---|
| 218 | print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 219 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
[70975f3] | 220 | |
---|
| 221 | class SlabY(_Slab): |
---|
| 222 | """ |
---|
| 223 | Compute average I(Qy) for a region of interest |
---|
| 224 | """ |
---|
| 225 | def __call__(self, data2D): |
---|
| 226 | """ |
---|
| 227 | Compute average I(Qy) for a region of interest |
---|
| 228 | |
---|
| 229 | @param data2D: Data2D object |
---|
| 230 | @return: Data1D object |
---|
| 231 | """ |
---|
| 232 | return self._avg(data2D, 'y') |
---|
| 233 | |
---|
| 234 | class SlabX(_Slab): |
---|
| 235 | """ |
---|
| 236 | Compute average I(Qx) for a region of interest |
---|
| 237 | """ |
---|
| 238 | def __call__(self, data2D): |
---|
| 239 | """ |
---|
| 240 | Compute average I(Qx) for a region of interest |
---|
| 241 | |
---|
| 242 | @param data2D: Data2D object |
---|
| 243 | @return: Data1D object |
---|
| 244 | """ |
---|
| 245 | return self._avg(data2D, 'x') |
---|
[f8d0ee7] | 246 | |
---|
| 247 | class Boxsum(object): |
---|
| 248 | """ |
---|
| 249 | Perform the sum of counts in a 2D region of interest. |
---|
| 250 | """ |
---|
| 251 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 252 | # Minimum Qx value [A-1] |
---|
| 253 | self.x_min = x_min |
---|
| 254 | # Maximum Qx value [A-1] |
---|
| 255 | self.x_max = x_max |
---|
| 256 | # Minimum Qy value [A-1] |
---|
| 257 | self.y_min = y_min |
---|
| 258 | # Maximum Qy value [A-1] |
---|
| 259 | self.y_max = y_max |
---|
| 260 | |
---|
| 261 | def __call__(self, data2D): |
---|
| 262 | """ |
---|
| 263 | Perform the sum in the region of interest |
---|
| 264 | |
---|
| 265 | @param data2D: Data2D object |
---|
| 266 | @return: number of counts, error on number of counts |
---|
| 267 | """ |
---|
| 268 | y, err_y, y_counts = self._sum(data2D) |
---|
| 269 | |
---|
| 270 | # Average the sums |
---|
| 271 | counts = 0 if y_counts==0 else y |
---|
| 272 | error = 0 if y_counts==0 else math.sqrt(err_y) |
---|
| 273 | |
---|
| 274 | return counts, error |
---|
| 275 | |
---|
| 276 | def _sum(self, data2D): |
---|
| 277 | """ |
---|
| 278 | Perform the sum in the region of interest |
---|
| 279 | @param data2D: Data2D object |
---|
| 280 | @return: number of counts, error on number of counts, number of entries summed |
---|
| 281 | """ |
---|
| 282 | if len(data2D.detector) != 1: |
---|
| 283 | raise RuntimeError, "Circular averaging: invalid number of detectors: %g" % len(data2D.detector) |
---|
| 284 | |
---|
[095ab1b] | 285 | # Get data |
---|
[c6f95bb] | 286 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 287 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 288 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 289 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 290 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 291 | |
---|
[f8d0ee7] | 292 | y = 0.0 |
---|
| 293 | err_y = 0.0 |
---|
| 294 | y_counts = 0.0 |
---|
| 295 | |
---|
[095ab1b] | 296 | # Average pixelsize in q space |
---|
| 297 | for npts in range(len(data)): |
---|
| 298 | # default frac |
---|
| 299 | frac_x = 0 |
---|
| 300 | frac_y = 0 |
---|
| 301 | |
---|
| 302 | # get min and max at each points |
---|
| 303 | qx = qx_data[npts] |
---|
| 304 | qy = qy_data[npts] |
---|
| 305 | |
---|
| 306 | # get the ROI |
---|
| 307 | if self.x_min <= qx and self.x_max > qx: |
---|
| 308 | frac_x = 1 |
---|
| 309 | if self.y_min <= qy and self.y_max > qy: |
---|
| 310 | frac_y = 1 |
---|
| 311 | |
---|
| 312 | #Find the fraction along each directions |
---|
| 313 | frac = frac_x * frac_y |
---|
| 314 | if frac == 0: continue |
---|
[f8d0ee7] | 315 | |
---|
[095ab1b] | 316 | y += frac * data[npts] |
---|
| 317 | if err_data == None or err_data[npts]==0.0: |
---|
[c6f95bb] | 318 | if data[npts] <0: data[npts] = -data[npts] |
---|
| 319 | err_y += frac * frac * data[npts] |
---|
[095ab1b] | 320 | else: |
---|
| 321 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
| 322 | y_counts += frac |
---|
| 323 | |
---|
[f8d0ee7] | 324 | return y, err_y, y_counts |
---|
[095ab1b] | 325 | |
---|
| 326 | |
---|
[f8d0ee7] | 327 | |
---|
| 328 | class Boxavg(Boxsum): |
---|
| 329 | """ |
---|
| 330 | Perform the average of counts in a 2D region of interest. |
---|
| 331 | """ |
---|
| 332 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 333 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max) |
---|
| 334 | |
---|
| 335 | def __call__(self, data2D): |
---|
| 336 | """ |
---|
| 337 | Perform the sum in the region of interest |
---|
| 338 | |
---|
| 339 | @param data2D: Data2D object |
---|
| 340 | @return: average counts, error on average counts |
---|
| 341 | """ |
---|
| 342 | y, err_y, y_counts = self._sum(data2D) |
---|
| 343 | |
---|
| 344 | # Average the sums |
---|
| 345 | counts = 0 if y_counts==0 else y/y_counts |
---|
| 346 | error = 0 if y_counts==0 else math.sqrt(err_y)/y_counts |
---|
| 347 | |
---|
| 348 | return counts, error |
---|
| 349 | |
---|
| 350 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
| 351 | """ |
---|
| 352 | Return the fraction of the length |
---|
| 353 | from xmin to x. |
---|
| 354 | |
---|
| 355 | A B |
---|
| 356 | +-----------+---------+ |
---|
| 357 | xmin x xmax |
---|
| 358 | |
---|
| 359 | @param x: x-value |
---|
| 360 | @param xmin: minimum x for the length considered |
---|
| 361 | @param xmax: minimum x for the length considered |
---|
| 362 | @return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
| 363 | |
---|
| 364 | """ |
---|
| 365 | if x<=xmin: |
---|
| 366 | return 0.0 |
---|
| 367 | if x>xmin and x<xmax: |
---|
| 368 | return (x-xmin)/(xmax-xmin) |
---|
| 369 | else: |
---|
| 370 | return 1.0 |
---|
| 371 | |
---|
[76e2369] | 372 | |
---|
| 373 | class CircularAverage(object): |
---|
| 374 | """ |
---|
| 375 | Perform circular averaging on 2D data |
---|
| 376 | |
---|
| 377 | The data returned is the distribution of counts |
---|
| 378 | as a function of Q |
---|
| 379 | """ |
---|
[095ab1b] | 380 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
[76e2369] | 381 | # Minimum radius included in the average [A-1] |
---|
| 382 | self.r_min = r_min |
---|
| 383 | # Maximum radius included in the average [A-1] |
---|
| 384 | self.r_max = r_max |
---|
| 385 | # Bin width (step size) [A-1] |
---|
| 386 | self.bin_width = bin_width |
---|
| 387 | |
---|
| 388 | def __call__(self, data2D): |
---|
| 389 | """ |
---|
| 390 | Perform circular averaging on the data |
---|
| 391 | |
---|
| 392 | @param data2D: Data2D object |
---|
| 393 | @return: Data1D object |
---|
| 394 | """ |
---|
[095ab1b] | 395 | # Get data |
---|
[c6f95bb] | 396 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 397 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 398 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 399 | |
---|
| 400 | q_data_max = numpy.max(q_data) |
---|
| 401 | |
---|
| 402 | if len(data2D.q_data) == None: |
---|
| 403 | raise RuntimeError, "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
| 404 | |
---|
[76e2369] | 405 | # Build array of Q intervals |
---|
[095ab1b] | 406 | nbins = int(math.ceil((self.r_max-self.r_min)/self.bin_width)) |
---|
[76e2369] | 407 | qbins = self.bin_width*numpy.arange(nbins)+self.r_min |
---|
[095ab1b] | 408 | |
---|
[76e2369] | 409 | x = numpy.zeros(nbins) |
---|
| 410 | y = numpy.zeros(nbins) |
---|
| 411 | err_y = numpy.zeros(nbins) |
---|
| 412 | y_counts = numpy.zeros(nbins) |
---|
[095ab1b] | 413 | |
---|
| 414 | for npt in range(len(data)): |
---|
| 415 | frac = 0 |
---|
[76e2369] | 416 | |
---|
[095ab1b] | 417 | # q-value at the pixel (j,i) |
---|
| 418 | q_value = q_data[npt] |
---|
| 419 | |
---|
| 420 | data_n = data[npt] |
---|
[3c67340] | 421 | |
---|
[095ab1b] | 422 | ## No need to calculate the frac when all data are within range |
---|
| 423 | if self.r_min >= self.r_max: |
---|
| 424 | raise ValueError, "Limit Error: min > max ???" |
---|
[76e2369] | 425 | |
---|
[095ab1b] | 426 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
[2f569b3] | 427 | |
---|
[095ab1b] | 428 | if frac == 0: continue |
---|
| 429 | |
---|
| 430 | i_q = int(math.floor((q_value-self.r_min)/self.bin_width)) |
---|
| 431 | |
---|
| 432 | # Take care of the edge case at phi = 2pi. |
---|
| 433 | if i_q == nbins: |
---|
| 434 | i_q = nbins -1 |
---|
| 435 | |
---|
| 436 | y[i_q] += frac * data_n |
---|
| 437 | |
---|
| 438 | if err_data == None or err_data[npt]==0.0: |
---|
[c6f95bb] | 439 | if data_n <0: data_n = -data_n |
---|
| 440 | err_y[i_q] += frac * frac * data_n |
---|
[8ba103f] | 441 | else: |
---|
[095ab1b] | 442 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
| 443 | y_counts[i_q] += frac |
---|
| 444 | |
---|
| 445 | ## x should be the center value of each bins |
---|
| 446 | x = qbins+self.bin_width/2 |
---|
| 447 | |
---|
| 448 | # Average the sums |
---|
| 449 | for n in range(nbins): |
---|
[c6f95bb] | 450 | if err_y[n] <0: err_y[n] = -err_y[n] |
---|
[095ab1b] | 451 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 452 | |
---|
| 453 | err_y = err_y/y_counts |
---|
| 454 | y = y/y_counts |
---|
| 455 | idx = (numpy.isfinite(y))&(numpy.isfinite(x)) |
---|
| 456 | |
---|
| 457 | if not idx.any(): |
---|
| 458 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 459 | elif len(y[idx])!= nbins: |
---|
| 460 | print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 461 | |
---|
| 462 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
[76e2369] | 463 | |
---|
| 464 | |
---|
| 465 | class Ring(object): |
---|
| 466 | """ |
---|
| 467 | Defines a ring on a 2D data set. |
---|
| 468 | The ring is defined by r_min, r_max, and |
---|
| 469 | the position of the center of the ring. |
---|
| 470 | |
---|
| 471 | The data returned is the distribution of counts |
---|
| 472 | around the ring as a function of phi. |
---|
| 473 | |
---|
[095ab1b] | 474 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 475 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
[76e2369] | 476 | """ |
---|
[095ab1b] | 477 | #Todo: remove center. |
---|
[bd89dea] | 478 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0,nbins=20 ): |
---|
[76e2369] | 479 | # Minimum radius |
---|
| 480 | self.r_min = r_min |
---|
| 481 | # Maximum radius |
---|
| 482 | self.r_max = r_max |
---|
| 483 | # Center of the ring in x |
---|
| 484 | self.center_x = center_x |
---|
| 485 | # Center of the ring in y |
---|
| 486 | self.center_y = center_y |
---|
| 487 | # Number of angular bins |
---|
[8ba103f] | 488 | self.nbins_phi = nbins |
---|
[76e2369] | 489 | |
---|
| 490 | def __call__(self, data2D): |
---|
| 491 | """ |
---|
| 492 | Apply the ring to the data set. |
---|
| 493 | Returns the angular distribution for a given q range |
---|
| 494 | |
---|
| 495 | @param data2D: Data2D object |
---|
| 496 | @return: Data1D object |
---|
| 497 | """ |
---|
| 498 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 499 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
| 500 | |
---|
[095ab1b] | 501 | Pi = math.pi |
---|
| 502 | |
---|
| 503 | # Get data |
---|
[c6f95bb] | 504 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 505 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 506 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 507 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 508 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 509 | |
---|
[095ab1b] | 510 | q_data_max = numpy.max(q_data) |
---|
| 511 | |
---|
| 512 | # Set space for 1d outputs |
---|
[76e2369] | 513 | phi_bins = numpy.zeros(self.nbins_phi) |
---|
| 514 | phi_counts = numpy.zeros(self.nbins_phi) |
---|
| 515 | phi_values = numpy.zeros(self.nbins_phi) |
---|
| 516 | phi_err = numpy.zeros(self.nbins_phi) |
---|
| 517 | |
---|
[095ab1b] | 518 | for npt in range(len(data)): |
---|
| 519 | frac = 0 |
---|
[76e2369] | 520 | |
---|
[095ab1b] | 521 | # q-value at the point (npt) |
---|
| 522 | q_value = q_data[npt] |
---|
| 523 | |
---|
| 524 | data_n = data[npt] |
---|
| 525 | |
---|
| 526 | # phi-value at the point (npt) |
---|
| 527 | phi_value=math.atan2(qy_data[npt],qx_data[npt])+Pi |
---|
[76e2369] | 528 | |
---|
[095ab1b] | 529 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
| 530 | |
---|
| 531 | if frac == 0: continue |
---|
[76e2369] | 532 | |
---|
[095ab1b] | 533 | # binning |
---|
| 534 | i_phi = int(math.floor((self.nbins_phi)*phi_value/(2*Pi))) |
---|
[76e2369] | 535 | |
---|
[095ab1b] | 536 | # Take care of the edge case at phi = 2pi. |
---|
| 537 | if i_phi == self.nbins_phi: |
---|
| 538 | i_phi = self.nbins_phi -1 |
---|
| 539 | |
---|
| 540 | phi_bins[i_phi] += frac * data[npt] |
---|
[76e2369] | 541 | |
---|
[095ab1b] | 542 | if err_data == None or err_data[npt] ==0.0: |
---|
[c6f95bb] | 543 | if data_n <0: data_n = -data_n |
---|
[095ab1b] | 544 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
| 545 | else: |
---|
| 546 | phi_err[i_phi] += frac * frac *err_data[npt]*err_data[npt] |
---|
| 547 | phi_counts[i_phi] += frac |
---|
| 548 | |
---|
[76e2369] | 549 | for i in range(self.nbins_phi): |
---|
| 550 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
| 551 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
[095ab1b] | 552 | phi_values[i] = 2.0*math.pi/self.nbins_phi*(1.0*i + 0.5) |
---|
[76e2369] | 553 | |
---|
[095ab1b] | 554 | idx = (numpy.isfinite(phi_bins)) |
---|
| 555 | |
---|
| 556 | if not idx.any(): |
---|
| 557 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 558 | elif len(phi_bins[idx])!= self.nbins_phi: |
---|
| 559 | print "resulted",self.nbins_phi- len(phi_bins[idx]),"empty bin(s) due to tight binning..." |
---|
| 560 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
[76e2369] | 561 | |
---|
| 562 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
| 563 | """ |
---|
| 564 | Returns the fraction of the pixel defined by |
---|
| 565 | the four corners (q_00, q_01, q_10, q_11) that |
---|
| 566 | has q < qmax. |
---|
| 567 | |
---|
| 568 | q_01 q_11 |
---|
| 569 | y=1 +--------------+ |
---|
| 570 | | | |
---|
| 571 | | | |
---|
| 572 | | | |
---|
| 573 | y=0 +--------------+ |
---|
[bb0b12c] | 574 | q_00 q_10 |
---|
[76e2369] | 575 | |
---|
| 576 | x=0 x=1 |
---|
| 577 | |
---|
| 578 | """ |
---|
| 579 | |
---|
| 580 | # y side for x = minx |
---|
| 581 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
| 582 | # y side for x = maxx |
---|
| 583 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
| 584 | |
---|
| 585 | # x side for y = miny |
---|
| 586 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
| 587 | # x side for y = maxy |
---|
| 588 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
| 589 | |
---|
| 590 | # surface fraction for a 1x1 pixel |
---|
| 591 | frac_max = 0 |
---|
| 592 | |
---|
| 593 | if x_0 and x_1: |
---|
| 594 | frac_max = (x_0+x_1)/2.0 |
---|
| 595 | |
---|
| 596 | elif y_0 and y_1: |
---|
| 597 | frac_max = (y_0+y_1)/2.0 |
---|
| 598 | |
---|
| 599 | elif x_0 and y_0: |
---|
| 600 | if q_00 < q_10: |
---|
| 601 | frac_max = x_0*y_0/2.0 |
---|
| 602 | else: |
---|
| 603 | frac_max = 1.0-x_0*y_0/2.0 |
---|
| 604 | |
---|
| 605 | elif x_0 and y_1: |
---|
| 606 | if q_00 < q_10: |
---|
| 607 | frac_max = x_0*y_1/2.0 |
---|
| 608 | else: |
---|
| 609 | frac_max = 1.0-x_0*y_1/2.0 |
---|
| 610 | |
---|
| 611 | elif x_1 and y_0: |
---|
| 612 | if q_00 > q_10: |
---|
| 613 | frac_max = x_1*y_0/2.0 |
---|
| 614 | else: |
---|
| 615 | frac_max = 1.0-x_1*y_0/2.0 |
---|
| 616 | |
---|
| 617 | elif x_1 and y_1: |
---|
| 618 | if q_00 < q_10: |
---|
| 619 | frac_max = 1.0 - (1.0-x_1)*(1.0-y_1)/2.0 |
---|
| 620 | else: |
---|
| 621 | frac_max = (1.0-x_1)*(1.0-y_1)/2.0 |
---|
| 622 | |
---|
| 623 | # If we make it here, there is no intercept between |
---|
| 624 | # this pixel and the constant-q ring. We only need |
---|
| 625 | # to know if we have to include it or exclude it. |
---|
| 626 | elif (q_00+q_01+q_10+q_11)/4.0 < qmax: |
---|
| 627 | frac_max = 1.0 |
---|
[095ab1b] | 628 | |
---|
[76e2369] | 629 | return frac_max |
---|
| 630 | |
---|
| 631 | def get_intercept(q, q_0, q_1): |
---|
| 632 | """ |
---|
| 633 | Returns the fraction of the side at which the |
---|
| 634 | q-value intercept the pixel, None otherwise. |
---|
| 635 | The values returned is the fraction ON THE SIDE |
---|
| 636 | OF THE LOWEST Q. |
---|
| 637 | |
---|
| 638 | |
---|
| 639 | |
---|
| 640 | A B |
---|
| 641 | +-----------+--------+ |
---|
| 642 | 0 1 <--- pixel size |
---|
| 643 | |
---|
| 644 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
| 645 | |
---|
| 646 | |
---|
| 647 | if Q_1 > Q_0, A is returned |
---|
| 648 | if Q_1 < Q_0, B is returned |
---|
| 649 | |
---|
| 650 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
| 651 | |
---|
| 652 | """ |
---|
| 653 | if q_1 > q_0: |
---|
| 654 | if (q > q_0 and q <= q_1): |
---|
| 655 | return (q-q_0)/(q_1 - q_0) |
---|
| 656 | else: |
---|
| 657 | if (q > q_1 and q <= q_0): |
---|
| 658 | return (q-q_1)/(q_0 - q_1) |
---|
| 659 | return None |
---|
[095ab1b] | 660 | |
---|
[fb198a9] | 661 | class _Sector: |
---|
| 662 | """ |
---|
| 663 | Defines a sector region on a 2D data set. |
---|
| 664 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
| 665 | and the position of the center of the ring |
---|
| 666 | where phi_min and phi_max are defined by the right and left lines wrt central line |
---|
| 667 | and phi_max could be less than phi_min. |
---|
| 668 | |
---|
[095ab1b] | 669 | Phi is defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side |
---|
[fb198a9] | 670 | """ |
---|
[095ab1b] | 671 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2*math.pi,nbins=20): |
---|
[fb198a9] | 672 | self.r_min = r_min |
---|
| 673 | self.r_max = r_max |
---|
| 674 | self.phi_min = phi_min |
---|
| 675 | self.phi_max = phi_max |
---|
| 676 | self.nbins = nbins |
---|
| 677 | |
---|
[095ab1b] | 678 | |
---|
[fb198a9] | 679 | def _agv(self, data2D, run='phi'): |
---|
| 680 | """ |
---|
| 681 | Perform sector averaging. |
---|
| 682 | |
---|
| 683 | @param data2D: Data2D object |
---|
[095ab1b] | 684 | @param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
[fb198a9] | 685 | @return: Data1D object |
---|
| 686 | """ |
---|
| 687 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 688 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
[095ab1b] | 689 | Pi = math.pi |
---|
[c6f95bb] | 690 | |
---|
[095ab1b] | 691 | # Get the all data & info |
---|
[c6f95bb] | 692 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 693 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 694 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 695 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 696 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 697 | |
---|
| 698 | #set space for 1d outputs |
---|
| 699 | x = numpy.zeros(self.nbins) |
---|
[fb198a9] | 700 | y = numpy.zeros(self.nbins) |
---|
[095ab1b] | 701 | y_err = numpy.zeros(self.nbins) |
---|
[fb198a9] | 702 | y_counts = numpy.zeros(self.nbins) |
---|
[095ab1b] | 703 | |
---|
| 704 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
| 705 | phi_min = flip_phi(self.phi_min) |
---|
| 706 | phi_max = flip_phi(self.phi_max) |
---|
[bb0b12c] | 707 | |
---|
[095ab1b] | 708 | q_data_max = numpy.max(q_data) |
---|
| 709 | |
---|
| 710 | for n in range(len(data)): |
---|
| 711 | frac = 0 |
---|
[3c67340] | 712 | |
---|
[095ab1b] | 713 | # q-value at the pixel (j,i) |
---|
| 714 | q_value = q_data[n] |
---|
[fb198a9] | 715 | |
---|
[095ab1b] | 716 | |
---|
| 717 | data_n = data[n] |
---|
[3c67340] | 718 | |
---|
[095ab1b] | 719 | # Is pixel within range? |
---|
| 720 | is_in = False |
---|
[3c67340] | 721 | |
---|
[095ab1b] | 722 | # phi-value of the pixel (j,i) |
---|
| 723 | phi_value=math.atan2(qy_data[n],qx_data[n])+Pi |
---|
[3c67340] | 724 | |
---|
[095ab1b] | 725 | ## No need to calculate the frac when all data are within range |
---|
| 726 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
[3c67340] | 727 | |
---|
[095ab1b] | 728 | if frac == 0: continue |
---|
| 729 | |
---|
| 730 | #In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
[3c67340] | 731 | if run.lower()=='q2': |
---|
[095ab1b] | 732 | ## For minor sector wing |
---|
| 733 | # Calculate the minor wing phis |
---|
| 734 | phi_min_minor = flip_phi(phi_min-Pi) |
---|
| 735 | phi_max_minor = flip_phi(phi_max-Pi) |
---|
| 736 | # Check if phis of the minor ring is within 0 to 2pi |
---|
| 737 | if phi_min_minor > phi_max_minor: |
---|
| 738 | is_in = (phi_value > phi_min_minor or phi_value < phi_max_minor) |
---|
[3c67340] | 739 | else: |
---|
[095ab1b] | 740 | is_in = (phi_value > phi_min_minor and phi_value < phi_max_minor) |
---|
[bb0b12c] | 741 | |
---|
[095ab1b] | 742 | #For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
| 743 | #Find pixels within ROI |
---|
| 744 | if phi_min > phi_max: |
---|
| 745 | is_in = is_in or (phi_value > phi_min or phi_value < phi_max) |
---|
| 746 | else: |
---|
| 747 | is_in = is_in or (phi_value>= phi_min and phi_value <phi_max) |
---|
| 748 | |
---|
| 749 | if not is_in: frac = 0 |
---|
| 750 | if frac == 0: continue |
---|
| 751 | |
---|
[3c67340] | 752 | # Check which type of averaging we need |
---|
| 753 | if run.lower()=='phi': |
---|
[095ab1b] | 754 | i_bin = int(math.floor((self.nbins)*(phi_value-self.phi_min)\ |
---|
| 755 | /(self.phi_max-self.phi_min))) |
---|
[3c67340] | 756 | else: |
---|
[095ab1b] | 757 | i_bin = int(math.floor((self.nbins)*(q_value-self.r_min)/(self.r_max-self.r_min))) |
---|
| 758 | |
---|
| 759 | # Take care of the edge case at phi = 2pi. |
---|
| 760 | if i_bin == self.nbins: |
---|
| 761 | i_bin = self.nbins -1 |
---|
| 762 | |
---|
| 763 | ## Get the total y |
---|
| 764 | y[i_bin] += frac * data_n |
---|
| 765 | |
---|
| 766 | if err_data == None or err_data[n] ==0.0: |
---|
[c6f95bb] | 767 | if data_n<0: data_n= -data_n |
---|
| 768 | y_err[i_bin] += frac * frac * data_n |
---|
[3c67340] | 769 | else: |
---|
[095ab1b] | 770 | y_err[i_bin] += frac * frac * err_data[n]*err_data[n] |
---|
[3c67340] | 771 | y_counts[i_bin] += frac |
---|
[095ab1b] | 772 | |
---|
| 773 | # Organize the results |
---|
[fb198a9] | 774 | for i in range(self.nbins): |
---|
| 775 | y[i] = y[i] / y_counts[i] |
---|
| 776 | y_err[i] = math.sqrt(y_err[i]) / y_counts[i] |
---|
| 777 | |
---|
[095ab1b] | 778 | # The type of averaging: phi,q2, or q |
---|
| 779 | # Calculate x[i]should be at the center of the bin |
---|
| 780 | if run.lower()=='phi': |
---|
| 781 | x[i] = (self.phi_max-self.phi_min)/self.nbins*(1.0*i + 0.5)+self.phi_min |
---|
| 782 | else: |
---|
| 783 | x[i] = (self.r_max-self.r_min)/self.nbins*(1.0*i + 0.5)+self.r_min |
---|
| 784 | |
---|
| 785 | idx = (numpy.isfinite(y)& numpy.isfinite(y_err)) |
---|
| 786 | |
---|
| 787 | if not idx.any(): |
---|
| 788 | raise ValueError, "Average Error: No points inside sector of ROI to average..." |
---|
| 789 | elif len(y[idx])!= self.nbins: |
---|
| 790 | print "resulted",self.nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 791 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx]) |
---|
[fb198a9] | 792 | |
---|
[2e83ff3] | 793 | class SectorPhi(_Sector): |
---|
| 794 | """ |
---|
| 795 | Sector average as a function of phi. |
---|
| 796 | I(phi) is return and the data is averaged over Q. |
---|
| 797 | |
---|
| 798 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 799 | The number of bin in phi also has to be defined. |
---|
| 800 | """ |
---|
| 801 | def __call__(self, data2D): |
---|
| 802 | """ |
---|
| 803 | Perform sector average and return I(phi). |
---|
| 804 | |
---|
| 805 | @param data2D: Data2D object |
---|
| 806 | @return: Data1D object |
---|
| 807 | """ |
---|
[c6f95bb] | 808 | |
---|
[2e83ff3] | 809 | return self._agv(data2D, 'phi') |
---|
[fb198a9] | 810 | |
---|
| 811 | class SectorQ(_Sector): |
---|
| 812 | """ |
---|
| 813 | Sector average as a function of Q for both symatric wings. |
---|
| 814 | I(Q) is return and the data is averaged over phi. |
---|
| 815 | |
---|
| 816 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 817 | r_min, r_max, phi_min, phi_max >0. |
---|
| 818 | The number of bin in Q also has to be defined. |
---|
| 819 | """ |
---|
| 820 | def __call__(self, data2D): |
---|
| 821 | """ |
---|
| 822 | Perform sector average and return I(Q). |
---|
| 823 | |
---|
| 824 | @param data2D: Data2D object |
---|
| 825 | @return: Data1D object |
---|
| 826 | """ |
---|
| 827 | return self._agv(data2D, 'q2') |
---|
[c6f95bb] | 828 | |
---|
[f265927] | 829 | class Ringcut(object): |
---|
| 830 | """ |
---|
| 831 | Defines a ring on a 2D data set. |
---|
| 832 | The ring is defined by r_min, r_max, and |
---|
| 833 | the position of the center of the ring. |
---|
| 834 | |
---|
| 835 | The data returned is the region inside the ring |
---|
| 836 | |
---|
| 837 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 838 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
| 839 | """ |
---|
| 840 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0 ): |
---|
| 841 | # Minimum radius |
---|
| 842 | self.r_min = r_min |
---|
| 843 | # Maximum radius |
---|
| 844 | self.r_max = r_max |
---|
| 845 | # Center of the ring in x |
---|
| 846 | self.center_x = center_x |
---|
| 847 | # Center of the ring in y |
---|
| 848 | self.center_y = center_y |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | def __call__(self, data2D): |
---|
| 852 | """ |
---|
| 853 | Apply the ring to the data set. |
---|
| 854 | Returns the angular distribution for a given q range |
---|
| 855 | |
---|
| 856 | @param data2D: Data2D object |
---|
| 857 | @return: index array in the range |
---|
| 858 | """ |
---|
| 859 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 860 | raise RuntimeError, "Ring cut only take plottable_2D objects" |
---|
| 861 | |
---|
| 862 | # Get data |
---|
| 863 | qx_data = data2D.qx_data |
---|
| 864 | qy_data = data2D.qy_data |
---|
| 865 | mask = data2D.mask |
---|
| 866 | q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) |
---|
| 867 | #q_data_max = numpy.max(q_data) |
---|
| 868 | |
---|
| 869 | # check whether or not the data point is inside ROI |
---|
| 870 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
| 871 | |
---|
| 872 | return (out) |
---|
| 873 | |
---|
| 874 | |
---|
[c6f95bb] | 875 | class Boxcut(object): |
---|
| 876 | """ |
---|
| 877 | Find a rectangular 2D region of interest. |
---|
| 878 | """ |
---|
| 879 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 880 | # Minimum Qx value [A-1] |
---|
| 881 | self.x_min = x_min |
---|
| 882 | # Maximum Qx value [A-1] |
---|
| 883 | self.x_max = x_max |
---|
| 884 | # Minimum Qy value [A-1] |
---|
| 885 | self.y_min = y_min |
---|
| 886 | # Maximum Qy value [A-1] |
---|
| 887 | self.y_max = y_max |
---|
| 888 | |
---|
| 889 | def __call__(self, data2D): |
---|
| 890 | """ |
---|
| 891 | Find a rectangular 2D region of interest. |
---|
| 892 | |
---|
| 893 | @param data2D: Data2D object |
---|
| 894 | @return: mask, 1d array (len = len(data)) |
---|
| 895 | with Trues where the data points are inside ROI, otherwise False |
---|
| 896 | """ |
---|
| 897 | mask = self._find(data2D) |
---|
| 898 | |
---|
| 899 | return mask |
---|
| 900 | |
---|
| 901 | def _find(self, data2D): |
---|
| 902 | """ |
---|
| 903 | Find a rectangular 2D region of interest. |
---|
| 904 | @param data2D: Data2D object |
---|
| 905 | @return: out, 1d array (length = len(data)) |
---|
| 906 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 907 | """ |
---|
| 908 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 909 | raise RuntimeError, "Boxcut take only plottable_2D objects" |
---|
| 910 | # Get qx_ and qy_data |
---|
| 911 | qx_data = data2D.qx_data |
---|
| 912 | qy_data = data2D.qy_data |
---|
[f265927] | 913 | mask = data2D.mask |
---|
[c6f95bb] | 914 | |
---|
| 915 | # check whether or not the data point is inside ROI |
---|
[f265927] | 916 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
| 917 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
[c6f95bb] | 918 | |
---|
| 919 | return (outx & outy) |
---|
| 920 | |
---|
| 921 | class Sectorcut(object): |
---|
| 922 | """ |
---|
| 923 | Defines a sector (major + minor) region on a 2D data set. |
---|
| 924 | The sector is defined by phi_min, phi_max, |
---|
| 925 | where phi_min and phi_max are defined by the right and left lines wrt central line. |
---|
| 926 | |
---|
| 927 | Phi_min and phi_max are given in units of radian |
---|
| 928 | and (phi_max-phi_min) should not be larger than pi |
---|
| 929 | """ |
---|
| 930 | def __init__(self,phi_min=0, phi_max=math.pi): |
---|
| 931 | self.phi_min = phi_min |
---|
| 932 | self.phi_max = phi_max |
---|
| 933 | |
---|
| 934 | def __call__(self, data2D): |
---|
| 935 | """ |
---|
[f265927] | 936 | Find a rectangular 2D region of interest. |
---|
[c6f95bb] | 937 | |
---|
| 938 | @param data2D: Data2D object |
---|
| 939 | @return: mask, 1d array (len = len(data)) |
---|
| 940 | with Trues where the data points are inside ROI, otherwise False |
---|
| 941 | """ |
---|
| 942 | mask = self._find(data2D) |
---|
| 943 | |
---|
| 944 | return mask |
---|
| 945 | |
---|
| 946 | def _find(self, data2D): |
---|
| 947 | """ |
---|
| 948 | Find a rectangular 2D region of interest. |
---|
| 949 | @param data2D: Data2D object |
---|
| 950 | @return: out, 1d array (length = len(data)) |
---|
| 951 | with Trues where the data points are inside ROI, otherwise Falses |
---|
| 952 | """ |
---|
| 953 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 954 | raise RuntimeError, "Sectorcut take only plottable_2D objects" |
---|
| 955 | Pi = math.pi |
---|
| 956 | # Get data |
---|
| 957 | qx_data = data2D.qx_data |
---|
| 958 | qy_data = data2D.qy_data |
---|
| 959 | phi_data = numpy.zeros(len(qx_data)) |
---|
| 960 | |
---|
| 961 | # get phi from data |
---|
[f265927] | 962 | phi_data = numpy.arctan2(qy_data, qx_data) |
---|
| 963 | |
---|
| 964 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 965 | phi_min_major = flip_phi(self.phi_min+Pi)-Pi |
---|
| 966 | phi_max_major = flip_phi(self.phi_max+Pi)-Pi |
---|
[c6f95bb] | 967 | # check for major sector |
---|
[f265927] | 968 | if phi_min_major > phi_max_major: |
---|
| 969 | out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) |
---|
[c6f95bb] | 970 | else: |
---|
[f265927] | 971 | out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) |
---|
| 972 | |
---|
[c6f95bb] | 973 | # minor sector |
---|
| 974 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 975 | phi_min_minor = flip_phi(self.phi_min)-Pi |
---|
| 976 | phi_max_minor = flip_phi(self.phi_max)-Pi |
---|
| 977 | |
---|
| 978 | # check for minor sector |
---|
| 979 | if phi_min_minor > phi_max_minor: |
---|
[f265927] | 980 | out_minor= (phi_min_minor <= phi_data) + (phi_max_minor>= phi_data) |
---|
[c6f95bb] | 981 | else: |
---|
[f265927] | 982 | out_minor = (phi_min_minor <= phi_data) & (phi_max_minor >= phi_data) |
---|
[c6f95bb] | 983 | out = out_major + out_minor |
---|
[f265927] | 984 | |
---|
[c6f95bb] | 985 | return out |
---|
| 986 | |
---|
[76e2369] | 987 | if __name__ == "__main__": |
---|
| 988 | |
---|
| 989 | from loader import Loader |
---|
| 990 | |
---|
| 991 | |
---|
[f8d0ee7] | 992 | d = Loader().load('test/MAR07232_rest.ASC') |
---|
| 993 | #d = Loader().load('test/MP_New.sans') |
---|
[76e2369] | 994 | |
---|
| 995 | |
---|
[d9629c53] | 996 | r = SectorQ(r_min=.000001, r_max=.01, phi_min=0.0, phi_max=2*math.pi) |
---|
[f8d0ee7] | 997 | o = r(d) |
---|
| 998 | |
---|
[d9629c53] | 999 | s = Ring(r_min=.000001, r_max=.01) |
---|
[2e83ff3] | 1000 | p = s(d) |
---|
[70975f3] | 1001 | |
---|
| 1002 | for i in range(len(o.x)): |
---|
| 1003 | print o.x[i], o.y[i], o.dy[i] |
---|
[76e2369] | 1004 | |
---|
| 1005 | |
---|
| 1006 | |
---|