[0997158f] | 1 | |
---|
| 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2008, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
| 9 | |
---|
[76e2369] | 10 | """ |
---|
[f8d0ee7] | 11 | Data manipulations for 2D data sets. |
---|
| 12 | Using the meta data information, various types of averaging |
---|
| 13 | are performed in Q-space |
---|
[76e2369] | 14 | """ |
---|
| 15 | |
---|
| 16 | |
---|
| 17 | #TODO: copy the meta data from the 2D object to the resulting 1D object |
---|
| 18 | |
---|
| 19 | from data_info import plottable_2D, Data1D |
---|
| 20 | import math |
---|
| 21 | import numpy |
---|
| 22 | |
---|
| 23 | def get_q(dx, dy, det_dist, wavelength): |
---|
| 24 | """ |
---|
[0997158f] | 25 | :param dx: x-distance from beam center [mm] |
---|
| 26 | :param dy: y-distance from beam center [mm] |
---|
| 27 | |
---|
| 28 | :return: q-value at the given position |
---|
[76e2369] | 29 | """ |
---|
| 30 | # Distance from beam center in the plane of detector |
---|
| 31 | plane_dist = math.sqrt(dx*dx + dy*dy) |
---|
| 32 | # Half of the scattering angle |
---|
| 33 | theta = 0.5*math.atan(plane_dist/det_dist) |
---|
| 34 | return (4.0*math.pi/wavelength)*math.sin(theta) |
---|
[acb37d9] | 35 | |
---|
| 36 | def get_q_compo(dx, dy, det_dist, wavelength,compo=None): |
---|
[0997158f] | 37 | """ |
---|
| 38 | This reduces tiny error at very large q. |
---|
| 39 | Implementation of this func is not started yet.<--ToDo |
---|
| 40 | """ |
---|
[acb37d9] | 41 | if dy==0: |
---|
| 42 | if dx>=0: |
---|
| 43 | angle_xy=0 |
---|
| 44 | else: |
---|
| 45 | angle_xy=math.pi |
---|
| 46 | else: |
---|
| 47 | angle_xy=math.atan(dx/dy) |
---|
| 48 | |
---|
| 49 | if compo=="x": |
---|
| 50 | out=get_q(dx, dy, det_dist, wavelength)*cos(angle_xy) |
---|
| 51 | elif compo=="y": |
---|
| 52 | out=get_q(dx, dy, det_dist, wavelength)*sin(angle_xy) |
---|
| 53 | else: |
---|
| 54 | out=get_q(dx, dy, det_dist, wavelength) |
---|
| 55 | return out |
---|
[095ab1b] | 56 | |
---|
| 57 | def flip_phi(phi): |
---|
| 58 | """ |
---|
[0997158f] | 59 | Correct phi to within the 0 <= to <= 2pi range |
---|
| 60 | |
---|
| 61 | :return: phi in >=0 and <=2Pi |
---|
[095ab1b] | 62 | """ |
---|
| 63 | Pi = math.pi |
---|
| 64 | if phi < 0: |
---|
| 65 | phi_out = phi + 2*Pi |
---|
| 66 | elif phi > 2*Pi: |
---|
| 67 | phi_out = phi - 2*Pi |
---|
| 68 | else: |
---|
| 69 | phi_out = phi |
---|
| 70 | return phi_out |
---|
| 71 | |
---|
| 72 | def reader2D_converter(data2d=None): |
---|
| 73 | """ |
---|
[0997158f] | 74 | convert old 2d format opened by IhorReader or danse_reader to new Data2D format |
---|
| 75 | |
---|
| 76 | :param data2d: 2d array of Data2D object |
---|
| 77 | |
---|
| 78 | :return: 1d arrays of Data2D object |
---|
| 79 | |
---|
[095ab1b] | 80 | """ |
---|
| 81 | if data2d.data==None or data2d.x_bins==None or data2d.y_bins==None: |
---|
| 82 | raise ValueError,"Can't convert this data: data=None..." |
---|
[76e2369] | 83 | |
---|
[095ab1b] | 84 | from DataLoader.data_info import Data2D |
---|
| 85 | |
---|
| 86 | new_x = numpy.tile(data2d.x_bins, (len(data2d.y_bins),1)) |
---|
| 87 | new_y = numpy.tile(data2d.y_bins, (len(data2d.x_bins),1)) |
---|
| 88 | new_y = new_y.swapaxes(0,1) |
---|
| 89 | |
---|
| 90 | new_data = data2d.data.flatten() |
---|
| 91 | qx_data = new_x.flatten() |
---|
| 92 | qy_data = new_y.flatten() |
---|
| 93 | q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) |
---|
[dde2d44] | 94 | if data2d.err_data == None or numpy.any(data2d.err_data<=0): |
---|
[f265927] | 95 | new_err_data = numpy.sqrt(numpy.abs(new_data)) |
---|
[dde2d44] | 96 | else: |
---|
| 97 | new_err_data = data2d.err_data.flatten() |
---|
[095ab1b] | 98 | mask = numpy.ones(len(new_data), dtype = bool) |
---|
| 99 | |
---|
| 100 | output = Data2D() |
---|
| 101 | output = data2d |
---|
| 102 | output.data = new_data |
---|
| 103 | output.err_data = new_err_data |
---|
| 104 | output.qx_data = qx_data |
---|
| 105 | output.qy_data = qy_data |
---|
| 106 | output.q_data = q_data |
---|
| 107 | output.mask = mask |
---|
| 108 | |
---|
| 109 | return output |
---|
| 110 | |
---|
[70975f3] | 111 | class _Slab(object): |
---|
| 112 | """ |
---|
[0997158f] | 113 | Compute average I(Q) for a region of interest |
---|
[70975f3] | 114 | """ |
---|
| 115 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0, bin_width=0.001): |
---|
| 116 | # Minimum Qx value [A-1] |
---|
| 117 | self.x_min = x_min |
---|
| 118 | # Maximum Qx value [A-1] |
---|
| 119 | self.x_max = x_max |
---|
| 120 | # Minimum Qy value [A-1] |
---|
| 121 | self.y_min = y_min |
---|
| 122 | # Maximum Qy value [A-1] |
---|
| 123 | self.y_max = y_max |
---|
| 124 | # Bin width (step size) [A-1] |
---|
| 125 | self.bin_width = bin_width |
---|
| 126 | # If True, I(|Q|) will be return, otherwise, negative q-values are allowed |
---|
| 127 | self.fold = False |
---|
| 128 | |
---|
| 129 | def __call__(self, data2D): return NotImplemented |
---|
| 130 | |
---|
| 131 | def _avg(self, data2D, maj): |
---|
| 132 | """ |
---|
[0997158f] | 133 | Compute average I(Q_maj) for a region of interest. |
---|
| 134 | The major axis is defined as the axis of Q_maj. |
---|
| 135 | The minor axis is the axis that we average over. |
---|
| 136 | |
---|
| 137 | :param data2D: Data2D object |
---|
| 138 | :param maj_min: min value on the major axis |
---|
| 139 | |
---|
| 140 | :return: Data1D object |
---|
[70975f3] | 141 | """ |
---|
| 142 | if len(data2D.detector) != 1: |
---|
| 143 | raise RuntimeError, "_Slab._avg: invalid number of detectors: %g" % len(data2D.detector) |
---|
| 144 | |
---|
[095ab1b] | 145 | # Get data |
---|
[c6f95bb] | 146 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 147 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 148 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 149 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 150 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 151 | |
---|
[70975f3] | 152 | # Build array of Q intervals |
---|
| 153 | if maj=='x': |
---|
[095ab1b] | 154 | if self.fold: x_min = 0 |
---|
| 155 | else: x_min = self.x_min |
---|
| 156 | nbins = int(math.ceil((self.x_max-x_min)/self.bin_width)) |
---|
| 157 | qbins = self.bin_width*numpy.arange(nbins)+ x_min |
---|
[70975f3] | 158 | elif maj=='y': |
---|
[095ab1b] | 159 | if self.fold: y_min = 0 |
---|
| 160 | else: y_min = self.y_min |
---|
| 161 | nbins = int(math.ceil((self.y_max-y_min)/self.bin_width)) |
---|
| 162 | qbins = self.bin_width*numpy.arange(nbins)+ y_min |
---|
[70975f3] | 163 | else: |
---|
| 164 | raise RuntimeError, "_Slab._avg: unrecognized axis %s" % str(maj) |
---|
| 165 | |
---|
| 166 | x = numpy.zeros(nbins) |
---|
| 167 | y = numpy.zeros(nbins) |
---|
| 168 | err_y = numpy.zeros(nbins) |
---|
| 169 | y_counts = numpy.zeros(nbins) |
---|
| 170 | |
---|
[095ab1b] | 171 | # Average pixelsize in q space |
---|
| 172 | for npts in range(len(data)): |
---|
| 173 | # default frac |
---|
| 174 | frac_x = 0 |
---|
| 175 | frac_y = 0 |
---|
| 176 | # get ROI |
---|
| 177 | if self.x_min <= qx_data[npts] and self.x_max > qx_data[npts]: |
---|
| 178 | frac_x = 1 |
---|
| 179 | if self.y_min <= qy_data[npts] and self.y_max > qy_data[npts]: |
---|
| 180 | frac_y = 1 |
---|
| 181 | |
---|
| 182 | frac = frac_x * frac_y |
---|
| 183 | |
---|
| 184 | if frac == 0: continue |
---|
[76e2369] | 185 | |
---|
[095ab1b] | 186 | # binning: find axis of q |
---|
| 187 | if maj=='x': |
---|
| 188 | q_value = qx_data[npts] |
---|
| 189 | min = x_min |
---|
| 190 | if maj=='y': |
---|
| 191 | q_value = qy_data[npts] |
---|
| 192 | min = y_min |
---|
| 193 | if self.fold and q_value<0: q_value = -q_value |
---|
| 194 | |
---|
| 195 | # bin |
---|
| 196 | i_q = int(math.ceil((q_value-min)/self.bin_width)) - 1 |
---|
| 197 | |
---|
| 198 | # skip outside of max bins |
---|
| 199 | if i_q<0 or i_q>=nbins: continue |
---|
| 200 | |
---|
| 201 | # give it full weight |
---|
| 202 | #frac = 1 |
---|
| 203 | |
---|
| 204 | #TODO: find better definition of x[i_q] based on q_data |
---|
| 205 | x[i_q] = min +(i_q+1)*self.bin_width/2.0 |
---|
| 206 | y[i_q] += frac * data[npts] |
---|
| 207 | |
---|
| 208 | if err_data == None or err_data[npts]==0.0: |
---|
[c6f95bb] | 209 | if data[npts] <0: data[npts] = -data[npts] |
---|
| 210 | err_y[i_q] += frac * frac * data[npts] |
---|
[095ab1b] | 211 | else: |
---|
| 212 | err_y[i_q] += frac * frac * err_data[npts] * err_data[npts] |
---|
| 213 | y_counts[i_q] += frac |
---|
[8ba103f] | 214 | |
---|
[095ab1b] | 215 | # Average the sums |
---|
| 216 | for n in range(nbins): |
---|
| 217 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 218 | |
---|
| 219 | err_y = err_y/y_counts |
---|
| 220 | y = y/y_counts |
---|
[70975f3] | 221 | |
---|
[095ab1b] | 222 | idx = (numpy.isfinite(y)& numpy.isfinite(x)) |
---|
| 223 | |
---|
| 224 | if not idx.any(): |
---|
| 225 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 226 | elif len(y[idx])!= nbins: |
---|
| 227 | print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 228 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
[70975f3] | 229 | |
---|
| 230 | class SlabY(_Slab): |
---|
| 231 | """ |
---|
[0997158f] | 232 | Compute average I(Qy) for a region of interest |
---|
[70975f3] | 233 | """ |
---|
| 234 | def __call__(self, data2D): |
---|
| 235 | """ |
---|
[0997158f] | 236 | Compute average I(Qy) for a region of interest |
---|
| 237 | |
---|
| 238 | :param data2D: Data2D object |
---|
| 239 | |
---|
| 240 | :return: Data1D object |
---|
[70975f3] | 241 | """ |
---|
| 242 | return self._avg(data2D, 'y') |
---|
| 243 | |
---|
| 244 | class SlabX(_Slab): |
---|
| 245 | """ |
---|
[0997158f] | 246 | Compute average I(Qx) for a region of interest |
---|
[70975f3] | 247 | """ |
---|
| 248 | def __call__(self, data2D): |
---|
| 249 | """ |
---|
[0997158f] | 250 | Compute average I(Qx) for a region of interest |
---|
| 251 | |
---|
| 252 | :param data2D: Data2D object |
---|
| 253 | |
---|
| 254 | :return: Data1D object |
---|
| 255 | |
---|
[70975f3] | 256 | """ |
---|
| 257 | return self._avg(data2D, 'x') |
---|
[f8d0ee7] | 258 | |
---|
| 259 | class Boxsum(object): |
---|
| 260 | """ |
---|
[0997158f] | 261 | Perform the sum of counts in a 2D region of interest. |
---|
[f8d0ee7] | 262 | """ |
---|
| 263 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 264 | # Minimum Qx value [A-1] |
---|
| 265 | self.x_min = x_min |
---|
| 266 | # Maximum Qx value [A-1] |
---|
| 267 | self.x_max = x_max |
---|
| 268 | # Minimum Qy value [A-1] |
---|
| 269 | self.y_min = y_min |
---|
| 270 | # Maximum Qy value [A-1] |
---|
| 271 | self.y_max = y_max |
---|
| 272 | |
---|
| 273 | def __call__(self, data2D): |
---|
| 274 | """ |
---|
[0997158f] | 275 | Perform the sum in the region of interest |
---|
| 276 | |
---|
| 277 | :param data2D: Data2D object |
---|
| 278 | |
---|
| 279 | :return: number of counts, error on number of counts |
---|
| 280 | |
---|
[f8d0ee7] | 281 | """ |
---|
| 282 | y, err_y, y_counts = self._sum(data2D) |
---|
| 283 | |
---|
| 284 | # Average the sums |
---|
| 285 | counts = 0 if y_counts==0 else y |
---|
| 286 | error = 0 if y_counts==0 else math.sqrt(err_y) |
---|
| 287 | |
---|
| 288 | return counts, error |
---|
| 289 | |
---|
| 290 | def _sum(self, data2D): |
---|
| 291 | """ |
---|
[0997158f] | 292 | Perform the sum in the region of interest |
---|
| 293 | |
---|
| 294 | :param data2D: Data2D object |
---|
| 295 | |
---|
| 296 | :return: number of counts, error on number of counts, number of entries summed |
---|
| 297 | |
---|
[f8d0ee7] | 298 | """ |
---|
| 299 | if len(data2D.detector) != 1: |
---|
| 300 | raise RuntimeError, "Circular averaging: invalid number of detectors: %g" % len(data2D.detector) |
---|
| 301 | |
---|
[095ab1b] | 302 | # Get data |
---|
[c6f95bb] | 303 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 304 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 305 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 306 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 307 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 308 | |
---|
[f8d0ee7] | 309 | y = 0.0 |
---|
| 310 | err_y = 0.0 |
---|
| 311 | y_counts = 0.0 |
---|
| 312 | |
---|
[095ab1b] | 313 | # Average pixelsize in q space |
---|
| 314 | for npts in range(len(data)): |
---|
| 315 | # default frac |
---|
| 316 | frac_x = 0 |
---|
| 317 | frac_y = 0 |
---|
| 318 | |
---|
| 319 | # get min and max at each points |
---|
| 320 | qx = qx_data[npts] |
---|
| 321 | qy = qy_data[npts] |
---|
| 322 | |
---|
| 323 | # get the ROI |
---|
| 324 | if self.x_min <= qx and self.x_max > qx: |
---|
| 325 | frac_x = 1 |
---|
| 326 | if self.y_min <= qy and self.y_max > qy: |
---|
| 327 | frac_y = 1 |
---|
| 328 | |
---|
| 329 | #Find the fraction along each directions |
---|
| 330 | frac = frac_x * frac_y |
---|
| 331 | if frac == 0: continue |
---|
[f8d0ee7] | 332 | |
---|
[095ab1b] | 333 | y += frac * data[npts] |
---|
| 334 | if err_data == None or err_data[npts]==0.0: |
---|
[c6f95bb] | 335 | if data[npts] <0: data[npts] = -data[npts] |
---|
| 336 | err_y += frac * frac * data[npts] |
---|
[095ab1b] | 337 | else: |
---|
| 338 | err_y += frac * frac * err_data[npts] * err_data[npts] |
---|
| 339 | y_counts += frac |
---|
| 340 | |
---|
[f8d0ee7] | 341 | return y, err_y, y_counts |
---|
[095ab1b] | 342 | |
---|
| 343 | |
---|
[f8d0ee7] | 344 | |
---|
| 345 | class Boxavg(Boxsum): |
---|
| 346 | """ |
---|
[0997158f] | 347 | Perform the average of counts in a 2D region of interest. |
---|
[f8d0ee7] | 348 | """ |
---|
| 349 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 350 | super(Boxavg, self).__init__(x_min=x_min, x_max=x_max, y_min=y_min, y_max=y_max) |
---|
| 351 | |
---|
| 352 | def __call__(self, data2D): |
---|
| 353 | """ |
---|
[0997158f] | 354 | Perform the sum in the region of interest |
---|
| 355 | |
---|
| 356 | :param data2D: Data2D object |
---|
| 357 | |
---|
| 358 | :return: average counts, error on average counts |
---|
| 359 | |
---|
[f8d0ee7] | 360 | """ |
---|
| 361 | y, err_y, y_counts = self._sum(data2D) |
---|
| 362 | |
---|
| 363 | # Average the sums |
---|
| 364 | counts = 0 if y_counts==0 else y/y_counts |
---|
| 365 | error = 0 if y_counts==0 else math.sqrt(err_y)/y_counts |
---|
| 366 | |
---|
| 367 | return counts, error |
---|
| 368 | |
---|
| 369 | def get_pixel_fraction_square(x, xmin, xmax): |
---|
| 370 | """ |
---|
[0997158f] | 371 | Return the fraction of the length |
---|
| 372 | from xmin to x.:: |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | A B |
---|
| 376 | +-----------+---------+ |
---|
| 377 | xmin x xmax |
---|
| 378 | |
---|
| 379 | :param x: x-value |
---|
| 380 | :param xmin: minimum x for the length considered |
---|
| 381 | :param xmax: minimum x for the length considered |
---|
| 382 | |
---|
| 383 | :return: (x-xmin)/(xmax-xmin) when xmin < x < xmax |
---|
| 384 | |
---|
[f8d0ee7] | 385 | """ |
---|
| 386 | if x<=xmin: |
---|
| 387 | return 0.0 |
---|
| 388 | if x>xmin and x<xmax: |
---|
| 389 | return (x-xmin)/(xmax-xmin) |
---|
| 390 | else: |
---|
| 391 | return 1.0 |
---|
| 392 | |
---|
[76e2369] | 393 | |
---|
| 394 | class CircularAverage(object): |
---|
| 395 | """ |
---|
[0997158f] | 396 | Perform circular averaging on 2D data |
---|
| 397 | |
---|
| 398 | The data returned is the distribution of counts |
---|
| 399 | as a function of Q |
---|
[76e2369] | 400 | """ |
---|
[095ab1b] | 401 | def __init__(self, r_min=0.0, r_max=0.0, bin_width=0.0005): |
---|
[76e2369] | 402 | # Minimum radius included in the average [A-1] |
---|
| 403 | self.r_min = r_min |
---|
| 404 | # Maximum radius included in the average [A-1] |
---|
| 405 | self.r_max = r_max |
---|
| 406 | # Bin width (step size) [A-1] |
---|
| 407 | self.bin_width = bin_width |
---|
| 408 | |
---|
| 409 | def __call__(self, data2D): |
---|
| 410 | """ |
---|
[0997158f] | 411 | Perform circular averaging on the data |
---|
| 412 | |
---|
| 413 | :param data2D: Data2D object |
---|
| 414 | |
---|
| 415 | :return: Data1D object |
---|
[76e2369] | 416 | """ |
---|
[095ab1b] | 417 | # Get data |
---|
[c6f95bb] | 418 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 419 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 420 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 421 | |
---|
| 422 | q_data_max = numpy.max(q_data) |
---|
| 423 | |
---|
| 424 | if len(data2D.q_data) == None: |
---|
| 425 | raise RuntimeError, "Circular averaging: invalid q_data: %g" % data2D.q_data |
---|
| 426 | |
---|
[76e2369] | 427 | # Build array of Q intervals |
---|
[095ab1b] | 428 | nbins = int(math.ceil((self.r_max-self.r_min)/self.bin_width)) |
---|
[76e2369] | 429 | qbins = self.bin_width*numpy.arange(nbins)+self.r_min |
---|
[095ab1b] | 430 | |
---|
[76e2369] | 431 | x = numpy.zeros(nbins) |
---|
| 432 | y = numpy.zeros(nbins) |
---|
| 433 | err_y = numpy.zeros(nbins) |
---|
| 434 | y_counts = numpy.zeros(nbins) |
---|
[095ab1b] | 435 | |
---|
| 436 | for npt in range(len(data)): |
---|
| 437 | frac = 0 |
---|
[76e2369] | 438 | |
---|
[095ab1b] | 439 | # q-value at the pixel (j,i) |
---|
| 440 | q_value = q_data[npt] |
---|
| 441 | |
---|
| 442 | data_n = data[npt] |
---|
[3c67340] | 443 | |
---|
[095ab1b] | 444 | ## No need to calculate the frac when all data are within range |
---|
| 445 | if self.r_min >= self.r_max: |
---|
| 446 | raise ValueError, "Limit Error: min > max ???" |
---|
[76e2369] | 447 | |
---|
[095ab1b] | 448 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
[2f569b3] | 449 | |
---|
[095ab1b] | 450 | if frac == 0: continue |
---|
| 451 | |
---|
| 452 | i_q = int(math.floor((q_value-self.r_min)/self.bin_width)) |
---|
| 453 | |
---|
| 454 | # Take care of the edge case at phi = 2pi. |
---|
| 455 | if i_q == nbins: |
---|
| 456 | i_q = nbins -1 |
---|
| 457 | |
---|
| 458 | y[i_q] += frac * data_n |
---|
| 459 | |
---|
| 460 | if err_data == None or err_data[npt]==0.0: |
---|
[c6f95bb] | 461 | if data_n <0: data_n = -data_n |
---|
| 462 | err_y[i_q] += frac * frac * data_n |
---|
[8ba103f] | 463 | else: |
---|
[095ab1b] | 464 | err_y[i_q] += frac * frac * err_data[npt] * err_data[npt] |
---|
| 465 | y_counts[i_q] += frac |
---|
| 466 | |
---|
| 467 | ## x should be the center value of each bins |
---|
| 468 | x = qbins+self.bin_width/2 |
---|
| 469 | |
---|
| 470 | # Average the sums |
---|
| 471 | for n in range(nbins): |
---|
[c6f95bb] | 472 | if err_y[n] <0: err_y[n] = -err_y[n] |
---|
[095ab1b] | 473 | err_y[n] = math.sqrt(err_y[n]) |
---|
| 474 | |
---|
| 475 | err_y = err_y/y_counts |
---|
| 476 | y = y/y_counts |
---|
| 477 | idx = (numpy.isfinite(y))&(numpy.isfinite(x)) |
---|
| 478 | |
---|
| 479 | if not idx.any(): |
---|
| 480 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 481 | elif len(y[idx])!= nbins: |
---|
| 482 | print "resulted",nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 483 | |
---|
| 484 | return Data1D(x=x[idx], y=y[idx], dy=err_y[idx]) |
---|
[76e2369] | 485 | |
---|
| 486 | |
---|
| 487 | class Ring(object): |
---|
| 488 | """ |
---|
[0997158f] | 489 | Defines a ring on a 2D data set. |
---|
| 490 | The ring is defined by r_min, r_max, and |
---|
| 491 | the position of the center of the ring. |
---|
| 492 | |
---|
| 493 | The data returned is the distribution of counts |
---|
| 494 | around the ring as a function of phi. |
---|
| 495 | |
---|
| 496 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 497 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
[76e2369] | 498 | """ |
---|
[095ab1b] | 499 | #Todo: remove center. |
---|
[bd89dea] | 500 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0,nbins=20 ): |
---|
[76e2369] | 501 | # Minimum radius |
---|
| 502 | self.r_min = r_min |
---|
| 503 | # Maximum radius |
---|
| 504 | self.r_max = r_max |
---|
| 505 | # Center of the ring in x |
---|
| 506 | self.center_x = center_x |
---|
| 507 | # Center of the ring in y |
---|
| 508 | self.center_y = center_y |
---|
| 509 | # Number of angular bins |
---|
[8ba103f] | 510 | self.nbins_phi = nbins |
---|
[76e2369] | 511 | |
---|
| 512 | def __call__(self, data2D): |
---|
| 513 | """ |
---|
[0997158f] | 514 | Apply the ring to the data set. |
---|
| 515 | Returns the angular distribution for a given q range |
---|
| 516 | |
---|
| 517 | :param data2D: Data2D object |
---|
| 518 | |
---|
| 519 | :return: Data1D object |
---|
[76e2369] | 520 | """ |
---|
| 521 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 522 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
| 523 | |
---|
[095ab1b] | 524 | Pi = math.pi |
---|
| 525 | |
---|
| 526 | # Get data |
---|
[c6f95bb] | 527 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 528 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 529 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 530 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 531 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
| 532 | |
---|
[095ab1b] | 533 | q_data_max = numpy.max(q_data) |
---|
| 534 | |
---|
| 535 | # Set space for 1d outputs |
---|
[76e2369] | 536 | phi_bins = numpy.zeros(self.nbins_phi) |
---|
| 537 | phi_counts = numpy.zeros(self.nbins_phi) |
---|
| 538 | phi_values = numpy.zeros(self.nbins_phi) |
---|
| 539 | phi_err = numpy.zeros(self.nbins_phi) |
---|
| 540 | |
---|
[095ab1b] | 541 | for npt in range(len(data)): |
---|
| 542 | frac = 0 |
---|
[76e2369] | 543 | |
---|
[095ab1b] | 544 | # q-value at the point (npt) |
---|
| 545 | q_value = q_data[npt] |
---|
| 546 | |
---|
| 547 | data_n = data[npt] |
---|
| 548 | |
---|
| 549 | # phi-value at the point (npt) |
---|
| 550 | phi_value=math.atan2(qy_data[npt],qx_data[npt])+Pi |
---|
[76e2369] | 551 | |
---|
[095ab1b] | 552 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
| 553 | |
---|
| 554 | if frac == 0: continue |
---|
[76e2369] | 555 | |
---|
[095ab1b] | 556 | # binning |
---|
| 557 | i_phi = int(math.floor((self.nbins_phi)*phi_value/(2*Pi))) |
---|
[76e2369] | 558 | |
---|
[095ab1b] | 559 | # Take care of the edge case at phi = 2pi. |
---|
| 560 | if i_phi == self.nbins_phi: |
---|
| 561 | i_phi = self.nbins_phi -1 |
---|
| 562 | |
---|
| 563 | phi_bins[i_phi] += frac * data[npt] |
---|
[76e2369] | 564 | |
---|
[095ab1b] | 565 | if err_data == None or err_data[npt] ==0.0: |
---|
[c6f95bb] | 566 | if data_n <0: data_n = -data_n |
---|
[095ab1b] | 567 | phi_err[i_phi] += frac * frac * math.fabs(data_n) |
---|
| 568 | else: |
---|
| 569 | phi_err[i_phi] += frac * frac *err_data[npt]*err_data[npt] |
---|
| 570 | phi_counts[i_phi] += frac |
---|
| 571 | |
---|
[76e2369] | 572 | for i in range(self.nbins_phi): |
---|
| 573 | phi_bins[i] = phi_bins[i] / phi_counts[i] |
---|
| 574 | phi_err[i] = math.sqrt(phi_err[i]) / phi_counts[i] |
---|
[095ab1b] | 575 | phi_values[i] = 2.0*math.pi/self.nbins_phi*(1.0*i + 0.5) |
---|
[76e2369] | 576 | |
---|
[095ab1b] | 577 | idx = (numpy.isfinite(phi_bins)) |
---|
| 578 | |
---|
| 579 | if not idx.any(): |
---|
| 580 | raise ValueError, "Average Error: No points inside ROI to average..." |
---|
| 581 | elif len(phi_bins[idx])!= self.nbins_phi: |
---|
| 582 | print "resulted",self.nbins_phi- len(phi_bins[idx]),"empty bin(s) due to tight binning..." |
---|
| 583 | return Data1D(x=phi_values[idx], y=phi_bins[idx], dy=phi_err[idx]) |
---|
[76e2369] | 584 | |
---|
| 585 | def get_pixel_fraction(qmax, q_00, q_01, q_10, q_11): |
---|
| 586 | """ |
---|
[0997158f] | 587 | Returns the fraction of the pixel defined by |
---|
| 588 | the four corners (q_00, q_01, q_10, q_11) that |
---|
| 589 | has q < qmax.:: |
---|
| 590 | |
---|
[76e2369] | 591 | q_01 q_11 |
---|
| 592 | y=1 +--------------+ |
---|
| 593 | | | |
---|
| 594 | | | |
---|
| 595 | | | |
---|
| 596 | y=0 +--------------+ |
---|
[bb0b12c] | 597 | q_00 q_10 |
---|
[76e2369] | 598 | |
---|
| 599 | x=0 x=1 |
---|
[0997158f] | 600 | |
---|
[76e2369] | 601 | """ |
---|
| 602 | |
---|
| 603 | # y side for x = minx |
---|
| 604 | x_0 = get_intercept(qmax, q_00, q_01) |
---|
| 605 | # y side for x = maxx |
---|
| 606 | x_1 = get_intercept(qmax, q_10, q_11) |
---|
| 607 | |
---|
| 608 | # x side for y = miny |
---|
| 609 | y_0 = get_intercept(qmax, q_00, q_10) |
---|
| 610 | # x side for y = maxy |
---|
| 611 | y_1 = get_intercept(qmax, q_01, q_11) |
---|
| 612 | |
---|
| 613 | # surface fraction for a 1x1 pixel |
---|
| 614 | frac_max = 0 |
---|
| 615 | |
---|
| 616 | if x_0 and x_1: |
---|
| 617 | frac_max = (x_0+x_1)/2.0 |
---|
| 618 | |
---|
| 619 | elif y_0 and y_1: |
---|
| 620 | frac_max = (y_0+y_1)/2.0 |
---|
| 621 | |
---|
| 622 | elif x_0 and y_0: |
---|
| 623 | if q_00 < q_10: |
---|
| 624 | frac_max = x_0*y_0/2.0 |
---|
| 625 | else: |
---|
| 626 | frac_max = 1.0-x_0*y_0/2.0 |
---|
| 627 | |
---|
| 628 | elif x_0 and y_1: |
---|
| 629 | if q_00 < q_10: |
---|
| 630 | frac_max = x_0*y_1/2.0 |
---|
| 631 | else: |
---|
| 632 | frac_max = 1.0-x_0*y_1/2.0 |
---|
| 633 | |
---|
| 634 | elif x_1 and y_0: |
---|
| 635 | if q_00 > q_10: |
---|
| 636 | frac_max = x_1*y_0/2.0 |
---|
| 637 | else: |
---|
| 638 | frac_max = 1.0-x_1*y_0/2.0 |
---|
| 639 | |
---|
| 640 | elif x_1 and y_1: |
---|
| 641 | if q_00 < q_10: |
---|
| 642 | frac_max = 1.0 - (1.0-x_1)*(1.0-y_1)/2.0 |
---|
| 643 | else: |
---|
| 644 | frac_max = (1.0-x_1)*(1.0-y_1)/2.0 |
---|
| 645 | |
---|
| 646 | # If we make it here, there is no intercept between |
---|
| 647 | # this pixel and the constant-q ring. We only need |
---|
| 648 | # to know if we have to include it or exclude it. |
---|
| 649 | elif (q_00+q_01+q_10+q_11)/4.0 < qmax: |
---|
| 650 | frac_max = 1.0 |
---|
[095ab1b] | 651 | |
---|
[76e2369] | 652 | return frac_max |
---|
| 653 | |
---|
| 654 | def get_intercept(q, q_0, q_1): |
---|
| 655 | """ |
---|
[0997158f] | 656 | Returns the fraction of the side at which the |
---|
| 657 | q-value intercept the pixel, None otherwise. |
---|
| 658 | The values returned is the fraction ON THE SIDE |
---|
| 659 | OF THE LOWEST Q. :: |
---|
| 660 | |
---|
| 661 | |
---|
| 662 | A B |
---|
| 663 | +-----------+--------+ <--- pixel size |
---|
| 664 | 0 1 |
---|
| 665 | Q_0 -------- Q ----- Q_1 <--- equivalent Q range |
---|
[76e2369] | 666 | if Q_1 > Q_0, A is returned |
---|
| 667 | if Q_1 < Q_0, B is returned |
---|
| 668 | if Q is outside the range of [Q_0, Q_1], None is returned |
---|
| 669 | |
---|
| 670 | """ |
---|
| 671 | if q_1 > q_0: |
---|
| 672 | if (q > q_0 and q <= q_1): |
---|
| 673 | return (q-q_0)/(q_1 - q_0) |
---|
| 674 | else: |
---|
| 675 | if (q > q_1 and q <= q_0): |
---|
| 676 | return (q-q_1)/(q_0 - q_1) |
---|
| 677 | return None |
---|
[095ab1b] | 678 | |
---|
[fb198a9] | 679 | class _Sector: |
---|
| 680 | """ |
---|
[0997158f] | 681 | Defines a sector region on a 2D data set. |
---|
| 682 | The sector is defined by r_min, r_max, phi_min, phi_max, |
---|
| 683 | and the position of the center of the ring |
---|
| 684 | where phi_min and phi_max are defined by the right and left lines wrt central line |
---|
| 685 | and phi_max could be less than phi_min. |
---|
| 686 | |
---|
| 687 | Phi is defined between 0 and 2*pi in anti-clockwise starting from the x- axis on the left-hand side |
---|
[fb198a9] | 688 | """ |
---|
[095ab1b] | 689 | def __init__(self, r_min, r_max, phi_min=0, phi_max=2*math.pi,nbins=20): |
---|
[fb198a9] | 690 | self.r_min = r_min |
---|
| 691 | self.r_max = r_max |
---|
| 692 | self.phi_min = phi_min |
---|
| 693 | self.phi_max = phi_max |
---|
| 694 | self.nbins = nbins |
---|
| 695 | |
---|
[095ab1b] | 696 | |
---|
[fb198a9] | 697 | def _agv(self, data2D, run='phi'): |
---|
| 698 | """ |
---|
[0997158f] | 699 | Perform sector averaging. |
---|
| 700 | |
---|
| 701 | :param data2D: Data2D object |
---|
| 702 | :param run: define the varying parameter ('phi' , 'q' , or 'q2') |
---|
| 703 | |
---|
| 704 | :return: Data1D object |
---|
[fb198a9] | 705 | """ |
---|
| 706 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 707 | raise RuntimeError, "Ring averaging only take plottable_2D objects" |
---|
[095ab1b] | 708 | Pi = math.pi |
---|
[c6f95bb] | 709 | |
---|
[095ab1b] | 710 | # Get the all data & info |
---|
[c6f95bb] | 711 | data = data2D.data[numpy.isfinite(data2D.data)] |
---|
| 712 | q_data = data2D.q_data[numpy.isfinite(data2D.data)] |
---|
| 713 | err_data = data2D.err_data[numpy.isfinite(data2D.data)] |
---|
| 714 | qx_data = data2D.qx_data[numpy.isfinite(data2D.data)] |
---|
| 715 | qy_data = data2D.qy_data[numpy.isfinite(data2D.data)] |
---|
[095ab1b] | 716 | |
---|
| 717 | #set space for 1d outputs |
---|
| 718 | x = numpy.zeros(self.nbins) |
---|
[fb198a9] | 719 | y = numpy.zeros(self.nbins) |
---|
[095ab1b] | 720 | y_err = numpy.zeros(self.nbins) |
---|
[fb198a9] | 721 | y_counts = numpy.zeros(self.nbins) |
---|
[095ab1b] | 722 | |
---|
| 723 | # Get the min and max into the region: 0 <= phi < 2Pi |
---|
| 724 | phi_min = flip_phi(self.phi_min) |
---|
| 725 | phi_max = flip_phi(self.phi_max) |
---|
[bb0b12c] | 726 | |
---|
[095ab1b] | 727 | q_data_max = numpy.max(q_data) |
---|
| 728 | |
---|
| 729 | for n in range(len(data)): |
---|
| 730 | frac = 0 |
---|
[3c67340] | 731 | |
---|
[095ab1b] | 732 | # q-value at the pixel (j,i) |
---|
| 733 | q_value = q_data[n] |
---|
[fb198a9] | 734 | |
---|
[095ab1b] | 735 | |
---|
| 736 | data_n = data[n] |
---|
[3c67340] | 737 | |
---|
[095ab1b] | 738 | # Is pixel within range? |
---|
| 739 | is_in = False |
---|
[3c67340] | 740 | |
---|
[095ab1b] | 741 | # phi-value of the pixel (j,i) |
---|
| 742 | phi_value=math.atan2(qy_data[n],qx_data[n])+Pi |
---|
[3c67340] | 743 | |
---|
[095ab1b] | 744 | ## No need to calculate the frac when all data are within range |
---|
| 745 | if self.r_min <= q_value and q_value <= self.r_max: frac = 1 |
---|
[3c67340] | 746 | |
---|
[095ab1b] | 747 | if frac == 0: continue |
---|
| 748 | |
---|
| 749 | #In case of two ROIs (symmetric major and minor regions)(for 'q2') |
---|
[3c67340] | 750 | if run.lower()=='q2': |
---|
[095ab1b] | 751 | ## For minor sector wing |
---|
| 752 | # Calculate the minor wing phis |
---|
| 753 | phi_min_minor = flip_phi(phi_min-Pi) |
---|
| 754 | phi_max_minor = flip_phi(phi_max-Pi) |
---|
| 755 | # Check if phis of the minor ring is within 0 to 2pi |
---|
| 756 | if phi_min_minor > phi_max_minor: |
---|
| 757 | is_in = (phi_value > phi_min_minor or phi_value < phi_max_minor) |
---|
[3c67340] | 758 | else: |
---|
[095ab1b] | 759 | is_in = (phi_value > phi_min_minor and phi_value < phi_max_minor) |
---|
[bb0b12c] | 760 | |
---|
[095ab1b] | 761 | #For all cases(i.e.,for 'q', 'q2', and 'phi') |
---|
| 762 | #Find pixels within ROI |
---|
| 763 | if phi_min > phi_max: |
---|
| 764 | is_in = is_in or (phi_value > phi_min or phi_value < phi_max) |
---|
| 765 | else: |
---|
| 766 | is_in = is_in or (phi_value>= phi_min and phi_value <phi_max) |
---|
| 767 | |
---|
| 768 | if not is_in: frac = 0 |
---|
| 769 | if frac == 0: continue |
---|
| 770 | |
---|
[3c67340] | 771 | # Check which type of averaging we need |
---|
| 772 | if run.lower()=='phi': |
---|
[095ab1b] | 773 | i_bin = int(math.floor((self.nbins)*(phi_value-self.phi_min)\ |
---|
| 774 | /(self.phi_max-self.phi_min))) |
---|
[3c67340] | 775 | else: |
---|
[095ab1b] | 776 | i_bin = int(math.floor((self.nbins)*(q_value-self.r_min)/(self.r_max-self.r_min))) |
---|
| 777 | |
---|
| 778 | # Take care of the edge case at phi = 2pi. |
---|
| 779 | if i_bin == self.nbins: |
---|
| 780 | i_bin = self.nbins -1 |
---|
| 781 | |
---|
| 782 | ## Get the total y |
---|
| 783 | y[i_bin] += frac * data_n |
---|
| 784 | |
---|
| 785 | if err_data == None or err_data[n] ==0.0: |
---|
[c6f95bb] | 786 | if data_n<0: data_n= -data_n |
---|
| 787 | y_err[i_bin] += frac * frac * data_n |
---|
[3c67340] | 788 | else: |
---|
[095ab1b] | 789 | y_err[i_bin] += frac * frac * err_data[n]*err_data[n] |
---|
[3c67340] | 790 | y_counts[i_bin] += frac |
---|
[095ab1b] | 791 | |
---|
| 792 | # Organize the results |
---|
[fb198a9] | 793 | for i in range(self.nbins): |
---|
| 794 | y[i] = y[i] / y_counts[i] |
---|
| 795 | y_err[i] = math.sqrt(y_err[i]) / y_counts[i] |
---|
| 796 | |
---|
[095ab1b] | 797 | # The type of averaging: phi,q2, or q |
---|
| 798 | # Calculate x[i]should be at the center of the bin |
---|
| 799 | if run.lower()=='phi': |
---|
| 800 | x[i] = (self.phi_max-self.phi_min)/self.nbins*(1.0*i + 0.5)+self.phi_min |
---|
| 801 | else: |
---|
| 802 | x[i] = (self.r_max-self.r_min)/self.nbins*(1.0*i + 0.5)+self.r_min |
---|
| 803 | |
---|
| 804 | idx = (numpy.isfinite(y)& numpy.isfinite(y_err)) |
---|
| 805 | |
---|
| 806 | if not idx.any(): |
---|
| 807 | raise ValueError, "Average Error: No points inside sector of ROI to average..." |
---|
| 808 | elif len(y[idx])!= self.nbins: |
---|
| 809 | print "resulted",self.nbins- len(y[idx]),"empty bin(s) due to tight binning..." |
---|
| 810 | return Data1D(x=x[idx], y=y[idx], dy=y_err[idx]) |
---|
[fb198a9] | 811 | |
---|
[2e83ff3] | 812 | class SectorPhi(_Sector): |
---|
| 813 | """ |
---|
[0997158f] | 814 | Sector average as a function of phi. |
---|
| 815 | I(phi) is return and the data is averaged over Q. |
---|
| 816 | |
---|
| 817 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 818 | The number of bin in phi also has to be defined. |
---|
[2e83ff3] | 819 | """ |
---|
| 820 | def __call__(self, data2D): |
---|
| 821 | """ |
---|
[0997158f] | 822 | Perform sector average and return I(phi). |
---|
| 823 | |
---|
| 824 | :param data2D: Data2D object |
---|
| 825 | :return: Data1D object |
---|
[2e83ff3] | 826 | """ |
---|
[c6f95bb] | 827 | |
---|
[2e83ff3] | 828 | return self._agv(data2D, 'phi') |
---|
[fb198a9] | 829 | |
---|
| 830 | class SectorQ(_Sector): |
---|
| 831 | """ |
---|
[0997158f] | 832 | Sector average as a function of Q for both symatric wings. |
---|
| 833 | I(Q) is return and the data is averaged over phi. |
---|
| 834 | |
---|
| 835 | A sector is defined by r_min, r_max, phi_min, phi_max. |
---|
| 836 | r_min, r_max, phi_min, phi_max >0. |
---|
| 837 | The number of bin in Q also has to be defined. |
---|
[fb198a9] | 838 | """ |
---|
| 839 | def __call__(self, data2D): |
---|
| 840 | """ |
---|
[0997158f] | 841 | Perform sector average and return I(Q). |
---|
| 842 | |
---|
| 843 | :param data2D: Data2D object |
---|
| 844 | |
---|
| 845 | :return: Data1D object |
---|
[fb198a9] | 846 | """ |
---|
| 847 | return self._agv(data2D, 'q2') |
---|
[c6f95bb] | 848 | |
---|
[f265927] | 849 | class Ringcut(object): |
---|
| 850 | """ |
---|
[0997158f] | 851 | Defines a ring on a 2D data set. |
---|
| 852 | The ring is defined by r_min, r_max, and |
---|
| 853 | the position of the center of the ring. |
---|
| 854 | |
---|
| 855 | The data returned is the region inside the ring |
---|
| 856 | |
---|
| 857 | Phi_min and phi_max should be defined between 0 and 2*pi |
---|
| 858 | in anti-clockwise starting from the x- axis on the left-hand side |
---|
[f265927] | 859 | """ |
---|
| 860 | def __init__(self, r_min=0, r_max=0, center_x=0, center_y=0 ): |
---|
| 861 | # Minimum radius |
---|
| 862 | self.r_min = r_min |
---|
| 863 | # Maximum radius |
---|
| 864 | self.r_max = r_max |
---|
| 865 | # Center of the ring in x |
---|
| 866 | self.center_x = center_x |
---|
| 867 | # Center of the ring in y |
---|
| 868 | self.center_y = center_y |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | def __call__(self, data2D): |
---|
| 872 | """ |
---|
[0997158f] | 873 | Apply the ring to the data set. |
---|
| 874 | Returns the angular distribution for a given q range |
---|
| 875 | |
---|
| 876 | :param data2D: Data2D object |
---|
| 877 | |
---|
| 878 | :return: index array in the range |
---|
[f265927] | 879 | """ |
---|
| 880 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 881 | raise RuntimeError, "Ring cut only take plottable_2D objects" |
---|
| 882 | |
---|
| 883 | # Get data |
---|
| 884 | qx_data = data2D.qx_data |
---|
| 885 | qy_data = data2D.qy_data |
---|
| 886 | mask = data2D.mask |
---|
| 887 | q_data = numpy.sqrt(qx_data*qx_data+qy_data*qy_data) |
---|
| 888 | #q_data_max = numpy.max(q_data) |
---|
| 889 | |
---|
| 890 | # check whether or not the data point is inside ROI |
---|
| 891 | out = (self.r_min <= q_data) & (self.r_max >= q_data) |
---|
| 892 | |
---|
| 893 | return (out) |
---|
| 894 | |
---|
| 895 | |
---|
[c6f95bb] | 896 | class Boxcut(object): |
---|
| 897 | """ |
---|
[0997158f] | 898 | Find a rectangular 2D region of interest. |
---|
[c6f95bb] | 899 | """ |
---|
| 900 | def __init__(self, x_min=0.0, x_max=0.0, y_min=0.0, y_max=0.0): |
---|
| 901 | # Minimum Qx value [A-1] |
---|
| 902 | self.x_min = x_min |
---|
| 903 | # Maximum Qx value [A-1] |
---|
| 904 | self.x_max = x_max |
---|
| 905 | # Minimum Qy value [A-1] |
---|
| 906 | self.y_min = y_min |
---|
| 907 | # Maximum Qy value [A-1] |
---|
| 908 | self.y_max = y_max |
---|
| 909 | |
---|
| 910 | def __call__(self, data2D): |
---|
| 911 | """ |
---|
[0997158f] | 912 | Find a rectangular 2D region of interest. |
---|
| 913 | |
---|
| 914 | :param data2D: Data2D object |
---|
| 915 | :return: mask, 1d array (len = len(data)) |
---|
| 916 | with Trues where the data points are inside ROI, otherwise False |
---|
[c6f95bb] | 917 | """ |
---|
| 918 | mask = self._find(data2D) |
---|
| 919 | |
---|
| 920 | return mask |
---|
| 921 | |
---|
| 922 | def _find(self, data2D): |
---|
| 923 | """ |
---|
[0997158f] | 924 | Find a rectangular 2D region of interest. |
---|
| 925 | |
---|
| 926 | :param data2D: Data2D object |
---|
| 927 | |
---|
| 928 | :return: out, 1d array (length = len(data)) |
---|
| 929 | with Trues where the data points are inside ROI, otherwise Falses |
---|
[c6f95bb] | 930 | """ |
---|
| 931 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 932 | raise RuntimeError, "Boxcut take only plottable_2D objects" |
---|
| 933 | # Get qx_ and qy_data |
---|
| 934 | qx_data = data2D.qx_data |
---|
| 935 | qy_data = data2D.qy_data |
---|
[f265927] | 936 | mask = data2D.mask |
---|
[c6f95bb] | 937 | |
---|
| 938 | # check whether or not the data point is inside ROI |
---|
[f265927] | 939 | outx = (self.x_min <= qx_data) & (self.x_max > qx_data) |
---|
| 940 | outy = (self.y_min <= qy_data) & (self.y_max > qy_data) |
---|
[c6f95bb] | 941 | |
---|
| 942 | return (outx & outy) |
---|
| 943 | |
---|
| 944 | class Sectorcut(object): |
---|
| 945 | """ |
---|
[0997158f] | 946 | Defines a sector (major + minor) region on a 2D data set. |
---|
| 947 | The sector is defined by phi_min, phi_max, |
---|
| 948 | where phi_min and phi_max are defined by the right and left lines wrt central line. |
---|
| 949 | |
---|
| 950 | Phi_min and phi_max are given in units of radian |
---|
| 951 | and (phi_max-phi_min) should not be larger than pi |
---|
[c6f95bb] | 952 | """ |
---|
| 953 | def __init__(self,phi_min=0, phi_max=math.pi): |
---|
| 954 | self.phi_min = phi_min |
---|
| 955 | self.phi_max = phi_max |
---|
| 956 | |
---|
| 957 | def __call__(self, data2D): |
---|
| 958 | """ |
---|
[0997158f] | 959 | Find a rectangular 2D region of interest. |
---|
| 960 | |
---|
| 961 | :param data2D: Data2D object |
---|
| 962 | |
---|
| 963 | :return: mask, 1d array (len = len(data)) |
---|
| 964 | |
---|
| 965 | with Trues where the data points are inside ROI, otherwise False |
---|
[c6f95bb] | 966 | """ |
---|
| 967 | mask = self._find(data2D) |
---|
| 968 | |
---|
| 969 | return mask |
---|
| 970 | |
---|
| 971 | def _find(self, data2D): |
---|
| 972 | """ |
---|
[0997158f] | 973 | Find a rectangular 2D region of interest. |
---|
| 974 | |
---|
| 975 | :param data2D: Data2D object |
---|
| 976 | |
---|
| 977 | :return: out, 1d array (length = len(data)) |
---|
| 978 | |
---|
| 979 | with Trues where the data points are inside ROI, otherwise Falses |
---|
[c6f95bb] | 980 | """ |
---|
| 981 | if data2D.__class__.__name__ not in ["Data2D", "plottable_2D"]: |
---|
| 982 | raise RuntimeError, "Sectorcut take only plottable_2D objects" |
---|
| 983 | Pi = math.pi |
---|
| 984 | # Get data |
---|
| 985 | qx_data = data2D.qx_data |
---|
| 986 | qy_data = data2D.qy_data |
---|
| 987 | phi_data = numpy.zeros(len(qx_data)) |
---|
| 988 | |
---|
| 989 | # get phi from data |
---|
[f265927] | 990 | phi_data = numpy.arctan2(qy_data, qx_data) |
---|
| 991 | |
---|
| 992 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 993 | phi_min_major = flip_phi(self.phi_min+Pi)-Pi |
---|
| 994 | phi_max_major = flip_phi(self.phi_max+Pi)-Pi |
---|
[c6f95bb] | 995 | # check for major sector |
---|
[f265927] | 996 | if phi_min_major > phi_max_major: |
---|
| 997 | out_major = (phi_min_major <= phi_data) + (phi_max_major > phi_data) |
---|
[c6f95bb] | 998 | else: |
---|
[f265927] | 999 | out_major = (phi_min_major <= phi_data) & (phi_max_major > phi_data) |
---|
| 1000 | |
---|
[c6f95bb] | 1001 | # minor sector |
---|
| 1002 | # Get the min and max into the region: -pi <= phi < Pi |
---|
| 1003 | phi_min_minor = flip_phi(self.phi_min)-Pi |
---|
| 1004 | phi_max_minor = flip_phi(self.phi_max)-Pi |
---|
| 1005 | |
---|
| 1006 | # check for minor sector |
---|
| 1007 | if phi_min_minor > phi_max_minor: |
---|
[f265927] | 1008 | out_minor= (phi_min_minor <= phi_data) + (phi_max_minor>= phi_data) |
---|
[c6f95bb] | 1009 | else: |
---|
[f265927] | 1010 | out_minor = (phi_min_minor <= phi_data) & (phi_max_minor >= phi_data) |
---|
[c6f95bb] | 1011 | out = out_major + out_minor |
---|
[f265927] | 1012 | |
---|
[c6f95bb] | 1013 | return out |
---|
| 1014 | |
---|
[76e2369] | 1015 | if __name__ == "__main__": |
---|
| 1016 | |
---|
| 1017 | from loader import Loader |
---|
| 1018 | |
---|
| 1019 | |
---|
[f8d0ee7] | 1020 | d = Loader().load('test/MAR07232_rest.ASC') |
---|
| 1021 | #d = Loader().load('test/MP_New.sans') |
---|
[76e2369] | 1022 | |
---|
| 1023 | |
---|
[d9629c53] | 1024 | r = SectorQ(r_min=.000001, r_max=.01, phi_min=0.0, phi_max=2*math.pi) |
---|
[f8d0ee7] | 1025 | o = r(d) |
---|
| 1026 | |
---|
[d9629c53] | 1027 | s = Ring(r_min=.000001, r_max=.01) |
---|
[2e83ff3] | 1028 | p = s(d) |
---|
[70975f3] | 1029 | |
---|
| 1030 | for i in range(len(o.x)): |
---|
| 1031 | print o.x[i], o.y[i], o.dy[i] |
---|
[76e2369] | 1032 | |
---|
| 1033 | |
---|
| 1034 | |
---|