source: sasmodels/sasmodels/product.py @ e9b1663d

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since e9b1663d was e9b1663d, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

pull from master

  • Property mode set to 100644
File size: 6.8 KB
Line 
1"""
2Product model
3-------------
4
5The product model multiplies the structure factor by the form factor,
6modulated by the effective radius of the form.  The resulting model
7has a attributes of both the model description (with parameters, etc.)
8and the module evaluator (with call, release, etc.).
9
10To use it, first load form factor P and structure factor S, then create
11*ProductModel(P, S)*.
12"""
13import numpy as np
14
15from .core import call_ER_VR
16from .generate import process_parameters
17
18SCALE=0
19BACKGROUND=1
20RADIUS_EFFECTIVE=2
21VOLFRACTION=3
22
23def make_product_info(p_info, s_info):
24    """
25    Create info block for product model.
26    """
27    p_id, p_name, p_pars = p_info['id'], p_info['name'], p_info['parameters']
28    s_id, s_name, s_pars = s_info['id'], s_info['name'], s_info['parameters']
29    # We require models to start with scale and background
30    assert s_pars[SCALE].name == 'scale'
31    assert s_pars[BACKGROUND].name == 'background'
32    # We require structure factors to start with effect radius and volfraction
33    assert s_pars[RADIUS_EFFECTIVE].name == 'radius_effective'
34    assert s_pars[VOLFRACTION].name == 'volfraction'
35    # Combine the parameter sets.  We are skipping the first three
36    # parameters of S since scale, background are defined in P and
37    # effect_radius is set from P.ER().
38    pars = p_pars + s_pars[3:]
39    # check for duplicates; can't use assertion since they may never be checked
40    if len(set(p.name for p in pars)) != len(pars):
41        raise ValueError("Duplicate parameters in %s and %s"%(p_id))
42    # For comparison with sasview, determine the old parameters.
43    oldname = [p_info['oldname'], s_info['oldname']]
44    oldpars = {'scale':'scale_factor'}
45    oldpars.update(p_info['oldpars'])
46    oldpars.update(s_info['oldpars'])
47
48    model_info = {}
49    model_info['id'] = '*'.join((p_id, s_id))
50    model_info['name'] = ' X '.join((p_name, s_name))
51    model_info['filename'] = None
52    model_info['title'] = 'Product of %s and structure factor %s'%(p_name, s_name)
53    model_info['description'] = model_info['title']
54    model_info['docs'] = model_info['title']
55    model_info['category'] = "custom"
56    model_info['parameters'] = pars
57    #model_info['single'] = p_info['single'] and s_info['single']
58    model_info['structure_factor'] = False
59    model_info['variant_info'] = None
60    #model_info['tests'] = []
61    #model_info['source'] = []
62    # Iq, Iqxy, form_volume, ER, VR and sesans
63    model_info['oldname'] = oldname
64    model_info['oldpars'] = oldpars
65    model_info['composition'] = ('product', [p_info, s_info])
66    process_parameters(model_info)
67    return model_info
68
69class ProductModel(object):
70    def __init__(self, model_info, P, S):
71        self.info = model_info
72        self.P = P
73        self.S = S
74
75    def __call__(self, q_vectors):
76        # Note: may be sending the q_vectors to the GPU twice even though they
77        # are only needed once.  It would mess up modularity quite a bit to
78        # handle this optimally, especially since there are many cases where
79        # separate q vectors are needed (e.g., form in python and structure
80        # in opencl; or both in opencl, but one in single precision and the
81        # other in double precision).
82        p_kernel = self.P(q_vectors)
83        s_kernel = self.S(q_vectors)
84        return ProductKernel(self.info, p_kernel, s_kernel)
85
86    def release(self):
87        """
88        Free resources associated with the model.
89        """
90        self.P.release()
91        self.S.release()
92
93
94class ProductKernel(object):
95    def __init__(self, model_info, p_kernel, s_kernel):
96        dim = '2d' if p_kernel.q_input.is_2d else '1d'
97
98        # Need to know if we want 2D and magnetic parameters when constructing
99        # a parameter map.
100        par_map = {}
101        p_info = p_kernel.info['par_type']
102        s_info = s_kernel.info['par_type']
103        vol_pars = set(p_info['volume'])
104        if dim == '2d':
105            num_p_fixed = len(p_info['fixed-2d'])
106            num_p_pd = len(p_info['pd-2d'])
107            num_s_fixed = len(s_info['fixed-2d'])
108            num_s_pd = len(s_info['pd-2d']) - 1 # exclude effect_radius
109            # volume parameters are amongst the pd pars for P, not S
110            vol_par_idx = [k for k,v in enumerate(p_info['pd-2d'])
111                           if v in vol_pars]
112        else:
113            num_p_fixed = len(p_info['fixed-1d'])
114            num_p_pd = len(p_info['pd-1d'])
115            num_s_fixed = len(s_info['fixed-1d'])
116            num_s_pd = len(s_info['pd-1d']) - 1  # exclude effect_radius
117            # volume parameters are amongst the pd pars for P, not S
118            vol_par_idx = [k for k,v in enumerate(p_info['pd-1d'])
119                           if v in vol_pars]
120
121        start = 0
122        par_map['p_fixed'] = np.arange(start, start+num_p_fixed)
123        # User doesn't set scale, background or effect_radius for S in P*S,
124        # so borrow values from end of p_fixed.  This makes volfraction the
125        # first S parameter.
126        start += num_p_fixed
127        par_map['s_fixed'] = np.hstack(([start,start],
128                                        np.arange(start, start+num_s_fixed-2)))
129        par_map['volfraction'] = num_p_fixed
130        start += num_s_fixed-2
131        # vol pars offset from the start of pd pars
132        par_map['vol_pars'] = [start+k for k in vol_par_idx]
133        par_map['p_pd'] = np.arange(start, start+num_p_pd)
134        start += num_p_pd-1
135        par_map['s_pd'] = np.hstack((start,
136                                     np.arange(start, start+num_s_pd-1)))
137
138        self.fixed_pars = model_info['partype']['fixed-' + dim]
139        self.pd_pars = model_info['partype']['pd-' + dim]
140        self.info = model_info
141        self.p_kernel = p_kernel
142        self.s_kernel = s_kernel
143        self.par_map = par_map
144
145    def __call__(self, fixed_pars, pd_pars, cutoff=1e-5):
146        pars = fixed_pars + pd_pars
147        scale = pars[SCALE]
148        background = pars[BACKGROUND]
149        s_volfraction = pars[self.par_map['volfraction']]
150        p_fixed = [pars[k] for k in self.par_map['p_fixed']]
151        s_fixed = [pars[k] for k in self.par_map['s_fixed']]
152        p_pd = [pars[k] for k in self.par_map['p_pd']]
153        s_pd = [pars[k] for k in self.par_map['s_pd']]
154        vol_pars = [pars[k] for k in self.par_map['vol_pars']]
155
156        effect_radius, vol_ratio = call_ER_VR(self.p_kernel.info, vol_pars)
157
158        p_fixed[SCALE] = s_volfraction
159        p_fixed[BACKGROUND] = 0.0
160        s_fixed[SCALE] = scale
161        s_fixed[BACKGROUND] = 0.0
162        s_fixed[2] = s_volfraction/vol_ratio
163        s_pd[0] = [effect_radius], [1.0]
164
165        p_res = self.p_kernel(p_fixed, p_pd, cutoff)
166        s_res = self.s_kernel(s_fixed, s_pd, cutoff)
167        #print s_fixed, s_pd, p_fixed, p_pd
168
169        return p_res*s_res + background
170
171    def release(self):
172        self.p_kernel.release()
173        self.q_kernel.release()
174
Note: See TracBrowser for help on using the repository browser.