source: sasmodels/sasmodels/product.py @ 5efe850

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 5efe850 was f247314, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

use sasmodels/convert.json for converting new models to old

  • Property mode set to 100644
File size: 6.6 KB
Line 
1"""
2Product model
3-------------
4
5The product model multiplies the structure factor by the form factor,
6modulated by the effective radius of the form.  The resulting model
7has a attributes of both the model description (with parameters, etc.)
8and the module evaluator (with call, release, etc.).
9
10To use it, first load form factor P and structure factor S, then create
11*ProductModel(P, S)*.
12"""
13import numpy as np
14
15from .core import call_ER_VR
16from .generate import process_parameters
17
18SCALE=0
19BACKGROUND=1
20RADIUS_EFFECTIVE=2
21VOLFRACTION=3
22
23# TODO: core_shell_sphere model has suppressed the volume ratio calculation
24# revert it after making VR and ER available at run time as constraints.
25def make_product_info(p_info, s_info):
26    """
27    Create info block for product model.
28    """
29    p_id, p_name, p_pars = p_info['id'], p_info['name'], p_info['parameters']
30    s_id, s_name, s_pars = s_info['id'], s_info['name'], s_info['parameters']
31    # We require models to start with scale and background
32    assert s_pars[SCALE].name == 'scale'
33    assert s_pars[BACKGROUND].name == 'background'
34    # We require structure factors to start with effect radius and volfraction
35    assert s_pars[RADIUS_EFFECTIVE].name == 'radius_effective'
36    assert s_pars[VOLFRACTION].name == 'volfraction'
37    # Combine the parameter sets.  We are skipping the first three
38    # parameters of S since scale, background are defined in P and
39    # effect_radius is set from P.ER().
40    pars = p_pars + s_pars[3:]
41    # check for duplicates; can't use assertion since they may never be checked
42    if len(set(p.name for p in pars)) != len(pars):
43        raise ValueError("Duplicate parameters in %s and %s"%(p_id))
44    model_info = {}
45    model_info['id'] = '*'.join((p_id, s_id))
46    model_info['name'] = ' X '.join((p_name, s_name))
47    model_info['filename'] = None
48    model_info['title'] = 'Product of %s and structure factor %s'%(p_name, s_name)
49    model_info['description'] = model_info['title']
50    model_info['docs'] = model_info['title']
51    model_info['category'] = "custom"
52    model_info['parameters'] = pars
53    #model_info['single'] = p_info['single'] and s_info['single']
54    model_info['structure_factor'] = False
55    model_info['variant_info'] = None
56    #model_info['tests'] = []
57    #model_info['source'] = []
58    # Iq, Iqxy, form_volume, ER, VR and sesans
59    model_info['composition'] = ('product', [p_info, s_info])
60    process_parameters(model_info)
61    return model_info
62
63class ProductModel(object):
64    def __init__(self, model_info, P, S):
65        self.info = model_info
66        self.P = P
67        self.S = S
68
69    def __call__(self, q_vectors):
70        # Note: may be sending the q_vectors to the GPU twice even though they
71        # are only needed once.  It would mess up modularity quite a bit to
72        # handle this optimally, especially since there are many cases where
73        # separate q vectors are needed (e.g., form in python and structure
74        # in opencl; or both in opencl, but one in single precision and the
75        # other in double precision).
76        p_kernel = self.P(q_vectors)
77        s_kernel = self.S(q_vectors)
78        return ProductKernel(self.info, p_kernel, s_kernel)
79
80    def release(self):
81        """
82        Free resources associated with the model.
83        """
84        self.P.release()
85        self.S.release()
86
87
88class ProductKernel(object):
89    def __init__(self, model_info, p_kernel, s_kernel):
90        dim = '2d' if p_kernel.q_input.is_2d else '1d'
91
92        # Need to know if we want 2D and magnetic parameters when constructing
93        # a parameter map.
94        par_map = {}
95        p_info = p_kernel.info['partype']
96        s_info = s_kernel.info['partype']
97        vol_pars = set(p_info['volume'])
98        if dim == '2d':
99            num_p_fixed = len(p_info['fixed-2d'])
100            num_p_pd = len(p_info['pd-2d'])
101            num_s_fixed = len(s_info['fixed-2d'])
102            num_s_pd = len(s_info['pd-2d']) - 1 # exclude effect_radius
103            # volume parameters are amongst the pd pars for P, not S
104            vol_par_idx = [k for k,v in enumerate(p_info['pd-2d'])
105                           if v in vol_pars]
106        else:
107            num_p_fixed = len(p_info['fixed-1d'])
108            num_p_pd = len(p_info['pd-1d'])
109            num_s_fixed = len(s_info['fixed-1d'])
110            num_s_pd = len(s_info['pd-1d']) - 1  # exclude effect_radius
111            # volume parameters are amongst the pd pars for P, not S
112            vol_par_idx = [k for k,v in enumerate(p_info['pd-1d'])
113                           if v in vol_pars]
114
115        start = 0
116        par_map['p_fixed'] = np.arange(start, start+num_p_fixed)
117        # User doesn't set scale, background or effect_radius for S in P*S,
118        # so borrow values from end of p_fixed.  This makes volfraction the
119        # first S parameter.
120        start += num_p_fixed
121        par_map['s_fixed'] = np.hstack(([start,start],
122                                        np.arange(start, start+num_s_fixed-2)))
123        par_map['volfraction'] = num_p_fixed
124        start += num_s_fixed-2
125        # vol pars offset from the start of pd pars
126        par_map['vol_pars'] = [start+k for k in vol_par_idx]
127        par_map['p_pd'] = np.arange(start, start+num_p_pd)
128        start += num_p_pd-1
129        par_map['s_pd'] = np.hstack((start,
130                                     np.arange(start, start+num_s_pd-1)))
131
132        self.fixed_pars = model_info['partype']['fixed-' + dim]
133        self.pd_pars = model_info['partype']['pd-' + dim]
134        self.info = model_info
135        self.p_kernel = p_kernel
136        self.s_kernel = s_kernel
137        self.par_map = par_map
138
139    def __call__(self, fixed_pars, pd_pars, cutoff=1e-5):
140        pars = fixed_pars + pd_pars
141        scale = pars[SCALE]
142        background = pars[BACKGROUND]
143        s_volfraction = pars[self.par_map['volfraction']]
144        p_fixed = [pars[k] for k in self.par_map['p_fixed']]
145        s_fixed = [pars[k] for k in self.par_map['s_fixed']]
146        p_pd = [pars[k] for k in self.par_map['p_pd']]
147        s_pd = [pars[k] for k in self.par_map['s_pd']]
148        vol_pars = [pars[k] for k in self.par_map['vol_pars']]
149
150        effect_radius, vol_ratio = call_ER_VR(self.p_kernel.info, vol_pars)
151
152        p_fixed[SCALE] = s_volfraction
153        p_fixed[BACKGROUND] = 0.0
154        s_fixed[SCALE] = scale
155        s_fixed[BACKGROUND] = 0.0
156        s_fixed[2] = s_volfraction/vol_ratio
157        s_pd[0] = [effect_radius], [1.0]
158
159        p_res = self.p_kernel(p_fixed, p_pd, cutoff)
160        s_res = self.s_kernel(s_fixed, s_pd, cutoff)
161        #print s_fixed, s_pd, p_fixed, p_pd
162
163        return p_res*s_res + background
164
165    def release(self):
166        self.p_kernel.release()
167        self.q_kernel.release()
168
Note: See TracBrowser for help on using the repository browser.