source: sasmodels/sasmodels/models/triaxial_ellipsoid.py @ 16afd49

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 16afd49 was 2f0c07d, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

make figure names regular (geometry, angle_definition, angle_projection)

  • Property mode set to 100644
File size: 4.7 KB
Line 
1# triaxial ellipsoid model
2# Note: model title and parameter table are inserted automatically
3r"""
4All three axes are of different lengths with $R_a \leq R_b \leq R_c$
5**Users should maintain this inequality for all calculations**.
6
7.. math::
8
9    P(q) = \text{scale} V \left< F^2(q) \right> + \text{background}
10
11where the volume $V = 4/3 \pi R_a R_b R_c$, and the averaging
12$\left<\ldots\right>$ is applied over all orientations for 1D.
13
14.. figure:: img/triaxial_ellipsoid_geometry.jpg
15
16    Ellipsoid schematic.
17
18Definition
19----------
20
21The form factor calculated is
22
23.. math::
24
25    P(q) = \frac{\text{scale}}{V}\int_0^1\int_0^1
26        \Phi^2(qR_a^2\cos^2( \pi x/2) + qR_b^2\sin^2(\pi y/2)(1-y^2) + R_c^2y^2)
27        dx dy
28
29where
30
31.. math::
32
33    \Phi(u) = 3 u^{-3} (\sin u - u \cos u)
34
35To provide easy access to the orientation of the triaxial ellipsoid,
36we define the axis of the cylinder using the angles $\theta$, $\phi$
37and $\psi$. These angles are defined on
38:num:`figure #triaxial-ellipsoid-angles`.
39The angle $\psi$ is the rotational angle around its own $c$ axis
40against the $q$ plane. For example, $\psi = 0$ when the
41$a$ axis is parallel to the $x$ axis of the detector.
42
43.. _triaxial-ellipsoid-angles:
44
45.. figure:: img/triaxial_ellipsoid_angle_projection.jpg
46
47    The angles for oriented ellipsoid.
48
49The radius-of-gyration for this system is  $R_g^2 = (R_a R_b R_c)^2/5$.
50
51The contrast is defined as SLD(ellipsoid) - SLD(solvent).  In the
52parameters, $R_a$ is the minor equatorial radius, $R_b$ is the major
53equatorial radius, and $R_c$ is the polar radius of the ellipsoid.
54
55NB: The 2nd virial coefficient of the triaxial solid ellipsoid is
56calculated based on the polar radius $R_p = R_c$ and equatorial
57radius $R_e = \sqrt{R_a R_b}$, and used as the effective radius for
58$S(q)$ when $P(q) \cdot S(q)$ is applied.
59
60Validation
61----------
62
63Validation of our code was done by comparing the output of the
641D calculation to the angular average of the output of 2D calculation
65over all possible angles.
66:num:`Figure #triaxial-ellipsoid-comparison` shows the comparison where
67the solid dot refers to averaged 2D while the line represents the
68result of 1D calculation (for 2D averaging, 76, 180, and 76 points
69are taken for the angles of $\theta$, $\phi$, and $\psi$ respectively).
70
71.. _triaxial-ellipsoid-comparison:
72
73.. figure:: img/triaxial_ellipsoid_comparison.png
74
75    Comparison between 1D and averaged 2D.
76
77References
78----------
79
80L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray
81and Neutron Scattering*, Plenum, New York, 1987.
82"""
83
84from numpy import inf
85
86name = "triaxial_ellipsoid"
87title = "Ellipsoid of uniform scattering length density with three independent axes."
88
89description = """\
90Note: During fitting ensure that the inequality ra<rb<rc is not
91        violated. Otherwise the calculation will
92        not be correct.
93"""
94category = "shape:ellipsoid"
95
96#             ["name", "units", default, [lower, upper], "type","description"],
97parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "",
98               "Ellipsoid scattering length density"],
99              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
100               "Solvent scattering length density"],
101              ["req_minor", "Ang", 20, [0, inf], "volume",
102               "Minor equitorial radius"],
103              ["req_major", "Ang", 400, [0, inf], "volume",
104               "Major equatorial radius"],
105              ["rpolar", "Ang", 10, [0, inf], "volume",
106               "Polar radius"],
107              ["theta", "degrees", 60, [-inf, inf], "orientation",
108               "In plane angle"],
109              ["phi", "degrees", 60, [-inf, inf], "orientation",
110               "Out of plane angle"],
111              ["psi", "degrees", 60, [-inf, inf], "orientation",
112               "Out of plane angle"],
113             ]
114
115source = ["lib/J1.c", "lib/sph_j1c.c", "lib/gauss76.c", "triaxial_ellipsoid.c"]
116
117def ER(req_minor, req_major, rpolar):
118    """
119        Returns the effective radius used in the S*P calculation
120    """
121    import numpy as np
122    from .ellipsoid import ER as ellipsoid_ER
123    return ellipsoid_ER(rpolar, np.sqrt(req_minor * req_major))
124
125demo = dict(scale=1, background=0,
126            sld=6, solvent_sld=1,
127            theta=30, phi=15, psi=5,
128            req_minor=25, req_major=36, rpolar=50,
129            req_minor_pd=0, req_minor_pd_n=1,
130            req_major_pd=0, req_major_pd_n=1,
131            rpolar_pd=.2, rpolar_pd_n=30,
132            theta_pd=15, theta_pd_n=45,
133            phi_pd=15, phi_pd_n=1,
134            psi_pd=15, psi_pd_n=1)
135oldname = 'TriaxialEllipsoidModel'
136oldpars = dict(theta='axis_theta', phi='axis_phi', psi='axis_psi',
137               sld='sldEll', solvent_sld='sldSolv',
138               req_minor='semi_axisA', req_major='semi_axisB',
139               rpolar='semi_axisC')
Note: See TracBrowser for help on using the repository browser.