source: sasmodels/sasmodels/models/spherepy.py @ aa2edb2

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since aa2edb2 was aa2edb2, checked in by gonzalezm, 8 years ago

Removing hardcoded figures to be replaced by autogenerated ones

  • Property mode set to 100644
File size: 3.9 KB
Line 
1r"""
2For information about polarised and magnetic scattering, click here_.
3
4.. _here: polar_mag_help.html
5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
13    I(q) = \frac{\text{scale}}{V} \cdot \left[
14        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
18$r$ is the radius of the sphere, *background* is the background level and
19*sld* and *solvent_sld* are the scattering length densities (SLDs) of the
20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Validation
31----------
32
33Validation of our code was done by comparing the output of the 1D model
34to the output of the software provided by the NIST (Kline, 2006).
35
36
37References
38----------
39
40A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
41John Wiley and Sons, New York, (1955)
42
43*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
44"""
45
46import numpy as np
47from numpy import pi, inf, sin, cos, sqrt, log
48
49name = "sphere (python)"
50title = "Spheres with uniform scattering length density"
51description = """\
52P(q)=(scale/V)*[3V(sld-solvent_sld)*(sin(qr)-qr cos(qr))
53                /(qr)^3]^2 + background
54    r: radius of sphere
55    V: The volume of the scatter
56    sld: the SLD of the sphere
57    solvent_sld: the SLD of the solvent
58"""
59category = "shape:sphere"
60
61#             ["name", "units", default, [lower, upper], "type","description"],
62parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "",
63               "Layer scattering length density"],
64              ["solvent_sld", "1e-6/Ang^2", 6, [-inf, inf], "",
65               "Solvent scattering length density"],
66              ["radius", "Ang", 50, [0, inf], "volume",
67               "Sphere radius"],
68             ]
69
70
71def form_volume(radius):
72    return 1.333333333333333 * pi * radius ** 3
73
74def Iq(q, sld, solvent_sld, radius):
75    #print "q",q
76    #print "sld,r",sld,solvent_sld,radius
77    qr = q * radius
78    sn, cn = sin(qr), cos(qr)
79    ## The natural expression for the bessel function is the following:
80    ##     bes = 3 * (sn-qr*cn)/qr**3 if qr>0 else 1
81    ## however, to support vector q values we need to handle the conditional
82    ## as a vector, which we do by first evaluating the full expression
83    ## everywhere, then fixing it up where it is broken.   We should probably
84    ## set numpy to ignore the 0/0 error before we do though...
85    bes = 3 * (sn - qr * cn) / qr ** 3 # may be 0/0 but we fix that next line
86    bes[qr == 0] = 1
87    fq = bes * (sld - solvent_sld) * form_volume(radius)
88    return 1.0e-4 * fq ** 2
89Iq.vectorized = True  # Iq accepts an array of q values
90
91def Iqxy(qx, qy, sld, solvent_sld, radius):
92    return Iq(sqrt(qx ** 2 + qy ** 2), sld, solvent_sld, radius)
93Iqxy.vectorized = True  # Iqxy accepts arrays of qx, qy values
94
95def sesans(z, sld, solvent_sld, radius):
96    """
97    Calculate SESANS-correlation function for a solid sphere.
98
99    Wim Bouwman after formulae Timofei Kruglov J.Appl.Cryst. 2003 article
100    """
101    d = z / radius
102    g = np.zeros_like(z)
103    g[d == 0] = 1.
104    low = ((d > 0) & (d < 2))
105    dlow = d[low]
106    dlow2 = dlow ** 2
107    g[low] = sqrt(1 - dlow2 / 4.) * (1 + dlow2 / 8.) + dlow2 / 2.*(1 - dlow2 / 16.) * log(dlow / (2. + sqrt(4. - dlow2)))
108    return g
109sesans.vectorized = True  # sesans accepts an array of z values
110
111def ER(radius):
112    return radius
113
114# VR defaults to 1.0
115
116demo = dict(scale=1, background=0,
117            sld=6, solvent_sld=1,
118            radius=120,
119            radius_pd=.2, radius_pd_n=45)
120oldname = "SphereModel"
121oldpars = dict(sld='sldSph', solvent_sld='sldSolv', radius='radius')
Note: See TracBrowser for help on using the repository browser.