source: sasmodels/sasmodels/models/spherepy.py @ 754c454

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 754c454 was a503bfd, checked in by pkienzle, 9 years ago

move sasview→sasmodels conversion info to model definition

  • Property mode set to 100644
File size: 4.1 KB
Line 
1r"""
2For information about polarised and magnetic scattering, click here_.
3
4.. _here: polar_mag_help.html
5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
13    I(Q) = \frac{\text{scale}}{V} \cdot \left[ \
14        3V(\Delta\rho) \cdot \frac{\sin(QR) - QR\cos(QR))}{(QR)^3} \
15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
18$R$ is the radius of the sphere, *background* is the background level and
19*sld* and *solvent_sld* are the scattering length densities (SLDs) of the
20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Our model uses the form factor calculations as defined in the IGOR
31package provided by the NIST Center for Neutron Research (Kline, 2006).
32
33Validation
34----------
35
36Validation of our code was done by comparing the output of the 1D model
37to the output of the software provided by the NIST (Kline, 2006).
38Figure :num:`figure #sphere-comparison` shows a comparison of the output
39of our model and the output of the NIST software.
40
41.. _sphere-comparison:
42
43.. figure:: img/sphere_comparison.jpg
44
45    Comparison of the DANSE scattering intensity for a sphere with the
46    output of the NIST SANS analysis software. The parameters were set to:
47    *scale* = 1.0, *radius* = 60 |Ang|, *contrast* = 1e-6 |Ang^-2|, and
48    *background* = 0.01 |cm^-1|.
49
50
51Reference
52---------
53
54A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
55John Wiley and Sons, New York, (1955)
56
57*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
58"""
59
60import numpy as np
61from numpy import pi, inf, sin, cos, sqrt, exp, log
62
63name = "sphere"
64title = "Spheres with uniform scattering length density"
65description = """\
66P(q)=(scale/V)*[3V(sld-solvent_sld)*(sin(qR)-qRcos(qR))
67                /(qR)^3]^2 + background
68    R: radius of sphere
69    V: The volume of the scatter
70    sld: the SLD of the sphere
71    solvent_sld: the SLD of the solvent
72"""
73
74parameters = [
75#   [ "name", "units", default, [lower, upper], "type",
76#     "description" ],
77    [ "sld", "1e-6/Ang^2", 1, [-inf,inf], "",
78      "Layer scattering length density" ],
79    [ "solvent_sld", "1e-6/Ang^2", 6, [-inf,inf], "",
80      "Solvent scattering length density" ],
81    [ "radius", "Ang",  50, [0, inf], "volume",
82      "Sphere radius" ],
83    ]
84
85
86def form_volume(radius):
87    return 1.333333333333333*pi*radius**3
88
89def Iq(q, sld, solvent_sld, radius):
90    #print "q",q
91    #print "sld,r",sld,solvent_sld,radius
92    qr = q*radius
93    sn, cn = sin(qr), cos(qr)
94    # FOR VECTORIZED VERSION, UNCOMMENT THE NEXT TWO LINES
95    bes = 3 * (sn-qr*cn)/qr**3 # may be 0/0 but we fix that next line
96    bes[qr==0] = 1
97    # FOR NON VECTORIZED VERSION, UNCOMMENT THE NEXT LINE
98    #bes = 3 * (sn-qr*cn)/qr**3 if qr>0 else 1
99    fq = bes * (sld - solvent_sld) * form_volume(radius)
100    return 1.0e-4*fq**2
101# FOR VECTORIZED VERSION, UNCOMMENT THE NEXT LINE
102Iq.vectorized = True
103
104def Iqxy(qx, qy, sld, solvent_sld, radius):
105    return Iq(sqrt(qx**2 + qy**2), sld, solvent_sld, radius)
106Iqxy.vectorized = True
107
108def sesans(z, sld, solvent_sld, radius):
109    """
110    Calculate SESANS-correlation function for a solid sphere.
111
112    Wim Bouwman after formulae Timofei Kruglov J.Appl.Cryst. 2003 article
113    """
114    d = z/radius
115    g = np.zeros_like(z)
116    g[d==0] = 1.
117    low = ((d > 0) & (d < 2))
118    dlow = d[low]
119    dlow2 = dlow**2
120    g[low] = sqrt(1-dlow2/4.)*(1+dlow2/8.) + dlow2/2.*(1-dlow2/16.)*log(dlow/(2.+sqrt(4.-dlow2)))
121    return g
122sesans.vectorized = True
123
124def ER(radius):
125    return radius
126
127# VR defaults to 1.0
128
129demo = dict(
130    scale=1, background=0,
131    sld=6, solvent_sld=1,
132    radius=120,
133    radius_pd=.2, radius_pd_n=45,
134    )
135oldname = "SphereModel"
136oldpars = dict(sld='sldSph', solvent_sld='sldSolv', radius='radius')
Note: See TracBrowser for help on using the repository browser.