source: sasmodels/sasmodels/models/spherepy.py @ 2556095

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 2556095 was eb69cce, checked in by Paul Kienzle <pkienzle@…>, 9 years ago

make model docs more consistent; build pdf docs

  • Property mode set to 100644
File size: 4.4 KB
RevLine 
[be802cb]1r"""
2For information about polarised and magnetic scattering, click here_.
3
4.. _here: polar_mag_help.html
5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
[eb69cce]13    I(q) = \frac{\text{scale}}{V} \cdot \left[
14        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
[be802cb]15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
[eb69cce]18$r$ is the radius of the sphere, *background* is the background level and
[be802cb]19*sld* and *solvent_sld* are the scattering length densities (SLDs) of the
20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Validation
31----------
32
33Validation of our code was done by comparing the output of the 1D model
34to the output of the software provided by the NIST (Kline, 2006).
[d138d43]35Figure :num:`figure #spherepy-comparison` shows a comparison of the output
[be802cb]36of our model and the output of the NIST software.
37
[d138d43]38.. _spherepy-comparison:
[be802cb]39
40.. figure:: img/sphere_comparison.jpg
41
42    Comparison of the DANSE scattering intensity for a sphere with the
43    output of the NIST SANS analysis software. The parameters were set to:
44    *scale* = 1.0, *radius* = 60 |Ang|, *contrast* = 1e-6 |Ang^-2|, and
45    *background* = 0.01 |cm^-1|.
46
47
[eb69cce]48References
49----------
[be802cb]50
51A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
52John Wiley and Sons, New York, (1955)
53
54*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
55"""
56
[10576d1]57import numpy as np
[3c56da87]58from numpy import pi, inf, sin, cos, sqrt, log
[be802cb]59
[34375ea]60name = "sphere (python)"
[be802cb]61title = "Spheres with uniform scattering length density"
62description = """\
[eb69cce]63P(q)=(scale/V)*[3V(sld-solvent_sld)*(sin(qr)-qr cos(qr))
64                /(qr)^3]^2 + background
65    r: radius of sphere
[be802cb]66    V: The volume of the scatter
67    sld: the SLD of the sphere
68    solvent_sld: the SLD of the solvent
69"""
[a5d0d00]70category = "shape:sphere"
[be802cb]71
[3e428ec]72#             ["name", "units", default, [lower, upper], "type","description"],
73parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "",
74               "Layer scattering length density"],
75              ["solvent_sld", "1e-6/Ang^2", 6, [-inf, inf], "",
76               "Solvent scattering length density"],
77              ["radius", "Ang", 50, [0, inf], "volume",
78               "Sphere radius"],
79             ]
[be802cb]80
81
82def form_volume(radius):
[3e428ec]83    return 1.333333333333333 * pi * radius ** 3
[be802cb]84
85def Iq(q, sld, solvent_sld, radius):
[b3f6bc3]86    #print "q",q
87    #print "sld,r",sld,solvent_sld,radius
[3e428ec]88    qr = q * radius
[be802cb]89    sn, cn = sin(qr), cos(qr)
[ade352a]90    ## The natural expression for the bessel function is the following:
91    ##     bes = 3 * (sn-qr*cn)/qr**3 if qr>0 else 1
92    ## however, to support vector q values we need to handle the conditional
93    ## as a vector, which we do by first evaluating the full expression
94    ## everywhere, then fixing it up where it is broken.   We should probably
95    ## set numpy to ignore the 0/0 error before we do though...
[3e428ec]96    bes = 3 * (sn - qr * cn) / qr ** 3 # may be 0/0 but we fix that next line
97    bes[qr == 0] = 1
[be802cb]98    fq = bes * (sld - solvent_sld) * form_volume(radius)
[3e428ec]99    return 1.0e-4 * fq ** 2
[eb69cce]100Iq.vectorized = True  # Iq accepts an array of q values
[be802cb]101
102def Iqxy(qx, qy, sld, solvent_sld, radius):
[3e428ec]103    return Iq(sqrt(qx ** 2 + qy ** 2), sld, solvent_sld, radius)
[eb69cce]104Iqxy.vectorized = True  # Iqxy accepts arrays of qx, qy values
[be802cb]105
[10576d1]106def sesans(z, sld, solvent_sld, radius):
107    """
108    Calculate SESANS-correlation function for a solid sphere.
109
110    Wim Bouwman after formulae Timofei Kruglov J.Appl.Cryst. 2003 article
111    """
[3e428ec]112    d = z / radius
[10576d1]113    g = np.zeros_like(z)
[3e428ec]114    g[d == 0] = 1.
[10576d1]115    low = ((d > 0) & (d < 2))
116    dlow = d[low]
[3e428ec]117    dlow2 = dlow ** 2
118    g[low] = sqrt(1 - dlow2 / 4.) * (1 + dlow2 / 8.) + dlow2 / 2.*(1 - dlow2 / 16.) * log(dlow / (2. + sqrt(4. - dlow2)))
[10576d1]119    return g
[ade352a]120sesans.vectorized = True  # sesans accepts and array of z values
[10576d1]121
[be802cb]122def ER(radius):
123    return radius
124
[b3f6bc3]125# VR defaults to 1.0
[d547f16]126
[3e428ec]127demo = dict(scale=1, background=0,
128            sld=6, solvent_sld=1,
129            radius=120,
130            radius_pd=.2, radius_pd_n=45)
[a503bfd]131oldname = "SphereModel"
132oldpars = dict(sld='sldSph', solvent_sld='sldSolv', radius='radius')
Note: See TracBrowser for help on using the repository browser.