source: sasmodels/sasmodels/models/sphere.py @ 0fa687d

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 0fa687d was 0fa687d, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

Use taylor series near q=0 for accurate single precision calculations

  • Property mode set to 100644
File size: 4.2 KB
Line 
1r"""
2For information about polarised and magnetic scattering, click here_.
3
4.. _here: polar_mag_help.html
5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
13    I(Q) = \frac{\text{scale}}{V} \cdot \left[ \
14        3V(\Delta\rho) \cdot \frac{\sin(QR) - QR\cos(QR))}{(QR)^3} \
15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
18$R$ is the radius of the sphere, *background* is the background level and
19*sld* and *solvent_sld* are the scattering length densities (SLDs) of the
20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Our model uses the form factor calculations as defined in the IGOR
31package provided by the NIST Center for Neutron Research (Kline, 2006).
32
33Validation
34----------
35
36Validation of our code was done by comparing the output of the 1D model
37to the output of the software provided by the NIST (Kline, 2006).
38Figure :num:`figure #sphere-comparison` shows a comparison of the output
39of our model and the output of the NIST software.
40
41.. _sphere-comparison:
42
43.. figure:: img/sphere_comparison.jpg
44
45    Comparison of the DANSE scattering intensity for a sphere with the
46    output of the NIST SANS analysis software. The parameters were set to:
47    *scale* = 1.0, *radius* = 60 |Ang|, *contrast* = 1e-6 |Ang^-2|, and
48    *background* = 0.01 |cm^-1|.
49
50
51Reference
52---------
53
54A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
55John Wiley and Sons, New York, (1955)
56
57*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
58"""
59
60from numpy import inf
61
62name = "sphere"
63title = "Spheres with uniform scattering length density"
64description = """\
65P(q)=(scale/V)*[3V(sld-solvent_sld)*(sin(qR)-qRcos(qR))
66                /(qR)^3]^2 + background
67    R: radius of sphere
68    V: The volume of the scatter
69    sld: the SLD of the sphere
70    solvent_sld: the SLD of the solvent
71"""
72category = "shape:sphere"
73
74#             ["name", "units", default, [lower, upper], "type","description"],
75parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "",
76               "Layer scattering length density"],
77              ["solvent_sld", "1e-6/Ang^2", 6, [-inf, inf], "",
78               "Solvent scattering length density"],
79              ["radius", "Ang", 50, [0, inf], "volume",
80               "Sphere radius"],
81             ]
82
83
84# No volume normalization despite having a volume parameter
85# This should perhaps be volume normalized?
86form_volume = """
87    return 1.333333333333333*M_PI*radius*radius*radius;
88    """
89
90Iq = """
91    const double qr = q*radius;
92    const double qrsq = qr*qr;
93    double sn, cn;
94    SINCOS(qr, sn, cn);
95    // Use taylor series for low Q to avoid cancellation error.  Tested against
96    // the following expression in quad precision:
97    //     3.0*(sn-qr*cn)/(qr*qr*qr);
98    // Note that the values differ from sasview ~ 5e-12 rather than 5e-14, but
99    // in this case it is likely cancellation errors in the original expression
100    // using double precision that are the source.  Single precision only
101    // requires the first 3 terms.  Double precision requires the 4th term.
102    // The fifth term is not needed, and is commented out below.
103    const double bes = (qr < 1e-1)
104        ? 1.0 + qrsq*(-3./30. + qrsq*(3./840. + qrsq*(-3./45360.)))// + qrsq*(3./3991680.))))
105        : 3.0*(sn/qr - cn)/qrsq;
106    const double fq = bes * (sld - solvent_sld) * form_volume(radius);
107    return 1.0e-4*fq*fq;
108    """
109
110Iqxy = """
111    // never called since no orientation or magnetic parameters.
112    //return -1.0;
113    return Iq(sqrt(qx*qx + qy*qy), sld, solvent_sld, radius);
114    """
115
116def ER(radius):
117    return radius
118
119# VR defaults to 1.0
120
121demo = dict(scale=1, background=0,
122            sld=6, solvent_sld=1,
123            radius=120,
124            radius_pd=.2, radius_pd_n=45)
125oldname = "SphereModel"
126oldpars = dict(sld='sldSph', solvent_sld='sldSolv', radius='radius')
Note: See TracBrowser for help on using the repository browser.