source: sasmodels/sasmodels/models/sphere.py @ b1c40bee

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since b1c40bee was b1c40bee, checked in by wojciech, 8 years ago

Moving magnetism file to seprate directory and temporarily revereting old magnetism link

  • Property mode set to 100644
File size: 2.7 KB
RevLine 
[5d4777d]1r"""
[40a87fa]2For information about polarised and magnetic scattering, see
[b1c40bee]3the :doc:`magnetic help <../sasgui/perspectives/fitting/mag_help>` documentation.
[40a87fa]4documentation.
[19dcb933]5
6Definition
7----------
8
9The 1D scattering intensity is calculated in the following way (Guinier, 1955)
10
11.. math::
12
[eb69cce]13    I(q) = \frac{\text{scale}}{V} \cdot \left[
14        3V(\Delta\rho) \cdot \frac{\sin(qr) - qr\cos(qr))}{(qr)^3}
[19dcb933]15        \right]^2 + \text{background}
16
17where *scale* is a volume fraction, $V$ is the volume of the scatterer,
[eb69cce]18$r$ is the radius of the sphere, *background* is the background level and
[49da079]19*sld* and *sld_solvent* are the scattering length densities (SLDs) of the
[19dcb933]20scatterer and the solvent respectively.
21
22Note that if your data is in absolute scale, the *scale* should represent
23the volume fraction (which is unitless) if you have a good fit. If not,
24it should represent the volume fraction times a factor (by which your data
25might need to be rescaled).
26
27The 2D scattering intensity is the same as above, regardless of the
28orientation of $\vec q$.
29
30Validation
31----------
32
33Validation of our code was done by comparing the output of the 1D model
34to the output of the software provided by the NIST (Kline, 2006).
35
36
[eb69cce]37References
38----------
[19dcb933]39
40A Guinier and G. Fournet, *Small-Angle Scattering of X-Rays*,
41John Wiley and Sons, New York, (1955)
42
43*2013/09/09 and 2014/01/06 - Description reviewed by S King and P Parker.*
[5d4777d]44"""
45
[3c56da87]46from numpy import inf
[5d4777d]47
48name = "sphere"
[19dcb933]49title = "Spheres with uniform scattering length density"
[5d4777d]50description = """\
[49da079]51P(q)=(scale/V)*[3V(sld-sld_solvent)*(sin(qr)-qr cos(qr))
[eb69cce]52                /(qr)^3]^2 + background
53    r: radius of sphere
[19dcb933]54    V: The volume of the scatter
55    sld: the SLD of the sphere
[49da079]56    sld_solvent: the SLD of the solvent
[5d4777d]57"""
[a5d0d00]58category = "shape:sphere"
[5d4777d]59
[3e428ec]60#             ["name", "units", default, [lower, upper], "type","description"],
[42356c8]61parameters = [["sld", "1e-6/Ang^2", 1, [-inf, inf], "sld",
[3e428ec]62               "Layer scattering length density"],
[42356c8]63              ["sld_solvent", "1e-6/Ang^2", 6, [-inf, inf], "sld",
[3e428ec]64               "Solvent scattering length density"],
65              ["radius", "Ang", 50, [0, inf], "volume",
66               "Sphere radius"],
67             ]
[5d4777d]68
[ad90df9]69source = ["lib/sph_j1c.c", "lib/sphere_form.c"]
[5d4777d]70
71# No volume normalization despite having a volume parameter
72# This should perhaps be volume normalized?
73form_volume = """
[ad90df9]74    return sphere_volume(radius);
[5d4777d]75    """
76
77Iq = """
[49da079]78    return sphere_form(q, radius, sld, sld_solvent);
[5d4777d]79    """
80
81def ER(radius):
[c691551]82    """
[364d8f7]83    Return equivalent radius (ER)
[c691551]84    """
[5d4777d]85    return radius
86
[d547f16]87# VR defaults to 1.0
88
[3e428ec]89demo = dict(scale=1, background=0,
[49da079]90            sld=6, sld_solvent=1,
[3e428ec]91            radius=120,
92            radius_pd=.2, radius_pd_n=45)
Note: See TracBrowser for help on using the repository browser.