1 | # rectangular_prism model |
---|
2 | # Note: model title and parameter table are inserted automatically |
---|
3 | r""" |
---|
4 | |
---|
5 | This model provides the form factor, *P(q)*, for a rectangular prism. |
---|
6 | |
---|
7 | Note that this model is almost totally equivalent to the existing |
---|
8 | :ref:`parallelepiped` model. |
---|
9 | The only difference is that the way the relevant |
---|
10 | parameters are defined here (*a*, *b/a*, *c/a* instead of *a*, *b*, *c*) |
---|
11 | allows to use polydispersity with this model while keeping the shape of |
---|
12 | the prism (e.g. setting *b/a* = 1 and *c/a* = 1 and applying polydispersity |
---|
13 | to *a* will generate a distribution of cubes of different sizes). |
---|
14 | Note also that, contrary to :ref:`parallelepiped`, it does not compute |
---|
15 | the 2D scattering. |
---|
16 | |
---|
17 | |
---|
18 | Definition |
---|
19 | ---------- |
---|
20 | |
---|
21 | The 1D scattering intensity for this model was calculated by Mittelbach and |
---|
22 | Porod (Mittelbach, 1961), but the implementation here is closer to the |
---|
23 | equations given by Nayuk and Huber (Nayuk, 2012). |
---|
24 | Note also that the angle definitions used in the code and the present |
---|
25 | documentation correspond to those used in (Nayuk, 2012) (see Fig. 1 of |
---|
26 | that reference), with |theta| corresponding to |alpha| in that paper, |
---|
27 | and not to the usual convention used for example in the |
---|
28 | :ref:`parallelepiped` model. As the present model does not compute |
---|
29 | the 2D scattering, this has no further consequences. |
---|
30 | |
---|
31 | In this model the scattering from a massive parallelepiped with an |
---|
32 | orientation with respect to the scattering vector given by |theta| |
---|
33 | and |phi| |
---|
34 | |
---|
35 | .. math:: |
---|
36 | A_P\,(q) = \frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}{\left( q \frac{C}{2} |
---|
37 | \cos\theta \right)} \, \times \, \frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi |
---|
38 | \bigr)}{\left( q \frac{A}{2} \sin\theta \sin\phi \right)} \, \times \, \frac{\sin \bigl( |
---|
39 | q \frac{B}{2} \sin\theta \cos\phi \bigr)}{\left( q \frac{B}{2} \sin\theta \cos\phi \right)} |
---|
40 | |
---|
41 | where *A*, *B* and *C* are the sides of the parallelepiped and must fulfill |
---|
42 | :math:`A \le B \le C`, |theta| is the angle between the *z* axis and the |
---|
43 | longest axis of the parallelepiped *C*, and |phi| is the angle between the |
---|
44 | scattering vector (lying in the *xy* plane) and the *y* axis. |
---|
45 | |
---|
46 | The normalized form factor in 1D is obtained averaging over all possible |
---|
47 | orientations |
---|
48 | |
---|
49 | .. math:: |
---|
50 | P(q) = \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \, |
---|
51 | \int_0^{\frac{\pi}{2}} A_P^2(q) \, \sin\theta \, d\theta \, d\phi |
---|
52 | |
---|
53 | And the 1D scattering intensity is calculated as |
---|
54 | |
---|
55 | .. math:: |
---|
56 | I(q) = \mbox{scale} \times V \times (\rho_{\mbox{p}} - |
---|
57 | \rho_{\mbox{solvent}})^2 \times P(q) |
---|
58 | |
---|
59 | where *V* is the volume of the rectangular prism, :math:`\rho_{\mbox{p}}` |
---|
60 | is the scattering length of the parallelepiped, :math:`\rho_{\mbox{solvent}}` |
---|
61 | is the scattering length of the solvent, and (if the data are in absolute |
---|
62 | units) *scale* represents the volume fraction (which is unitless). |
---|
63 | |
---|
64 | **The 2D scattering intensity is not computed by this model.** |
---|
65 | |
---|
66 | |
---|
67 | Validation |
---|
68 | ---------- |
---|
69 | |
---|
70 | Validation of the code was conducted by comparing the output of the 1D model |
---|
71 | to the output of the existing :ref:`parallelepiped` model. |
---|
72 | |
---|
73 | |
---|
74 | References |
---|
75 | ---------- |
---|
76 | |
---|
77 | P Mittelbach and G Porod, *Acta Physica Austriaca*, 14 (1961) 185-211 |
---|
78 | |
---|
79 | R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854 |
---|
80 | |
---|
81 | """ |
---|
82 | |
---|
83 | from numpy import pi, inf, sqrt |
---|
84 | |
---|
85 | name = "rectangular_prism" |
---|
86 | title = "Rectangular parallelepiped with uniform scattering length density." |
---|
87 | description = """ |
---|
88 | I(q)= scale*V*(sld - solvent_sld)^2*P(q,theta,phi)+background |
---|
89 | P(q,theta,phi) = (2/pi) * double integral from 0 to pi/2 of ... |
---|
90 | AP^2(q)*sin(theta)*dtheta*dphi |
---|
91 | AP = S(q*C*cos(theta)/2) * S(q*A*sin(theta)*sin(phi)/2) * S(q*B*sin(theta)*cos(phi)/2) |
---|
92 | S(x) = sin(x)/x |
---|
93 | """ |
---|
94 | category = "shape:parallelepiped" |
---|
95 | |
---|
96 | # ["name", "units", default, [lower, upper], "type","description"], |
---|
97 | parameters = [["sld", "1e-6/Ang^2", 6.3, [-inf, inf], "", |
---|
98 | "Parallelepiped scattering length density"], |
---|
99 | ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "", |
---|
100 | "Solvent scattering length density"], |
---|
101 | ["a_side", "Ang", 35, [0, inf], "volume", |
---|
102 | "Shorter side of the parallelepiped"], |
---|
103 | ["b2a_ratio", "Ang", 1, [0, inf], "volume", |
---|
104 | "Ratio sides b/a"], |
---|
105 | ["c2a_ratio", "Ang", 1, [0, inf], "volume", |
---|
106 | "Ratio sides c/a"], |
---|
107 | ] |
---|
108 | |
---|
109 | source = ["lib/gauss76.c", "rectangular_prism.c"] |
---|
110 | |
---|
111 | def ER(a_side, b2a_ratio, c2a_ratio): |
---|
112 | """ |
---|
113 | Return equivalent radius (ER) |
---|
114 | """ |
---|
115 | b_side = a_side * b2a_ratio |
---|
116 | c_side = a_side * c2a_ratio |
---|
117 | |
---|
118 | # surface average radius (rough approximation) |
---|
119 | surf_rad = sqrt(a_side * b_side / pi) |
---|
120 | |
---|
121 | ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad)) |
---|
122 | return 0.5 * (ddd) ** (1. / 3.) |
---|
123 | |
---|
124 | |
---|
125 | # parameters for demo |
---|
126 | demo = dict(scale=1, background=0, |
---|
127 | sld=6.3e-6, solvent_sld=1.0e-6, |
---|
128 | a_side=35, b2a_ratio=1, c2a_ratio=1, |
---|
129 | a_side_pd=0.1, a_side_pd_n=10, |
---|
130 | b2a_ratio_pd=0.1, b2a_ratio_pd_n=1, |
---|
131 | c2a_ratio_pd=0.1, c2a_ratio_pd_n=1) |
---|
132 | |
---|
133 | # For testing against the old sasview models, include the converted parameter |
---|
134 | # names and the target sasview model name. |
---|
135 | oldname = 'RectangularPrismModel' |
---|
136 | oldpars = dict(a_side='short_side', b2a_ratio='b2a_ratio', c_side='c2a_ratio', |
---|
137 | sld='sldPipe', solvent_sld='sldSolv') |
---|
138 | |
---|
139 | tests = [[{}, 0.2, 0.375248406825], |
---|
140 | [{}, [0.2], [0.375248406825]], |
---|
141 | ] |
---|