source: sasmodels/sasmodels/models/poly_gauss_coil.py @ 2c74c11

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 2c74c11 was 2c74c11, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

implicit Iqxy; fix divide by 0 for q=0

  • Property mode set to 100644
File size: 3.4 KB
Line 
1#poly_gauss_coil model
2#conversion of Poly_GaussCoil.py
3#converted by Steve King, Mar 2016
4
5
6 
7r"""
8This empirical model describes the scattering from *polydisperse* polymer chains in theta solvents or polymer melts, assuming a Schulz-Zimm type molecular weight distribution.
9
10To describe the scattering from *monodisperse* polymer chains, see the :ref:`mono_gauss_coil <mono-gauss-coil>` model.
11
12Definition
13----------
14
15     *I(q)* = *scale* |cdot| *I* \ :sub:`0` |cdot| *P(q)* + *background*
16
17where
18
19     *I*\ :sub:`0` = |phi|\ :sub:`poly` |cdot| *V* |cdot| (|rho|\ :sub:`poly` - |rho|\ :sub:`solv`)\ :sup:`2`
20
21     *P(q)* = 2 [(1 + UZ)\ :sup:`-1/U` + Z - 1] / [(1 + U) Z\ :sup:`2`]
22
23     *Z* = [(*q R*\ :sub:`g`)\ :sup:`2`] / (1 + 2U)
24
25     *U* = (Mw / Mn) - 1 = (*polydispersity ratio*) - 1
26
27and
28
29     *V* = *M* / (*N*\ :sub:`A` |delta|)
30
31Here, |phi|\ :sub:`poly`, is the volume fraction of polymer, *V* is the volume of a polymer coil, *M* is the molecular weight of the polymer, *N*\ :sub:`A` is Avogadro's Number, |delta| is the bulk density of the polymer, |rho|\ :sub:`poly` is the sld of the polymer, |rho|\ :sub:`solv` is the sld of the solvent, and *R*\ :sub:`g` is the radius of gyration of the polymer coil.
32
33The 2D scattering intensity is calculated in the same way as the 1D, but where the *q* vector is redefined as
34
35.. math::
36
37    q = \sqrt{q_x^2 + q_y^2}
38
39References
40----------
41
42O Glatter and O Kratky (editors), *Small Angle X-ray Scattering*, Academic Press, (1982)
43Page 404.
44
45J S Higgins, H C Benoit, *Polymers and Neutron Scattering*, Oxford Science Publications, (1996).
46
47S M King, *Small Angle Neutron Scattering* in *Modern Techniques for Polymer Characterisation*, Wiley, (1999).
48
49http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf
50"""
51
52from numpy import inf, exp, power
53
54name =  "poly_gauss_coil"
55title =  "Scattering from polydisperse polymer coils"
56
57description =  """
58    Evaluates the scattering from
59    polydisperse polymer chains.
60    """
61category =  "shape-independent"
62
63#             ["name", "units", default, [lower, upper], "type", "description"],
64parameters =  [["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"],
65               ["radius_gyration", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"],
66               ["polydispersity", "None", 2.0, [1.0, inf], "", "Polymer Mw/Mn"]]
67
68# NB: Scale and Background are implicit parameters on every model
69def Iq(q, i_zero, radius_gyration, polydispersity):
70    # pylint: disable = missing-docstring
71    u = polydispersity - 1.0
72    z = (q*radius_gyration)**2 / (1.0 + 2.0*u)
73    # need to trap the case of the polydispersity being 1 (ie, monodispersity!)
74    if polydispersity == 1.0:
75        inten = i_zero * 2.0 * (exp(-z) + z - 1.0)
76    else:
77        inten = i_zero * 2.0 * (power(1.0 + u*z, -1.0/u) + z - 1.0) / (1.0 + u)
78    index = q != 0.
79    inten[~index] = i_zero
80    inten[index] /= z[index]**2
81    return inten
82Iq.vectorized =  True  # Iq accepts an array of q values
83
84demo =  dict(scale = 1.0,
85            i_zero = 70.0,
86            radius_gyration = 75.0,
87            polydispersity = 2.0,
88            background = 0.0)
89
90# these unit test values taken from SasView 3.1.2
91tests =  [
92    [{'scale': 1.0, 'i_zero': 70.0, 'radius_gyration': 75.0, 'polydispersity': 2.0, 'background': 0.0},
93     [0.0106939, 0.469418], [57.6405, 0.169016]],
94    ]
Note: See TracBrowser for help on using the repository browser.