source: sasmodels/sasmodels/models/parallelepiped.py @ 6ef4293

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 6ef4293 was 6ef4293, checked in by smk78, 8 years ago

Changed wording of :numref: link to resolve a Sphinx formatting error
(with thanks to PaulK)

  • Property mode set to 100644
File size: 8.8 KB
Line 
1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6Definition
7----------
8
9| This model calculates the scattering from a rectangular parallelepiped (:numref:`parallelepiped-image`).
10| If you need to apply polydispersity, see also :ref:`rectangular-prism`.
11
12.. _parallelepiped-image:
13
14.. figure:: img/parallelepiped_geometry.jpg
15
16   Parallelepiped with the corresponding definition of sides.
17
18.. note::
19
20   The edge of the solid must satisfy the condition that $A < B < C$.
21   This requirement is not enforced in the model, so it is up to the
22   user to check this during the analysis.
23
24The 1D scattering intensity $I(q)$ is calculated as:
25
26.. Comment by Miguel Gonzalez:
27   I am modifying the original text because I find the notation a little bit
28   confusing. I think that in most textbooks/papers, the notation P(Q) is
29   used for the form factor (adim, P(Q=0)=1), although F(q) seems also to
30   be used. But here (as for many other models), P(q) is used to represent
31   the scattering intensity (in cm-1 normally). It would be good to agree on
32   a common notation.
33
34.. math::
35
36    I(q) = \frac{\text{scale}}{V} (\Delta\rho \cdot V)^2 \left< P(q, \alpha) \right>
37    + \text{background}
38
39where the volume $V = A B C$, the contrast is defined as
40:math:`\Delta\rho = \rho_{\textstyle p} - \rho_{\textstyle solvent}`,
41$P(q, \alpha)$ is the form factor corresponding to a parallelepiped oriented
42at an angle $\alpha$ (angle between the long axis C and :math:`\vec q`),
43and the averaging $\left<\ldots\right>$ is applied over all orientations.
44
45Assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
46form factor is given by (Mittelbach and Porod, 1961)
47
48.. math::
49
50    P(q, \alpha) = \int_0^1 \phi_Q\left(\mu \sqrt{1-\sigma^2},a\right)
51        \left[S(\mu c \sigma/2)\right]^2 d\sigma
52
53with
54
55.. math::
56
57    \phi_Q(\mu,a) = \int_0^1
58        \left\{S\left[\frac{\mu}{2}\cos\left(\frac{\pi}{2}u\right)\right]
59               S\left[\frac{\mu a}{2}\sin\left(\frac{\pi}{2}u\right)\right]
60               \right\}^2 du
61
62    S(x) = \frac{\sin x}{x}
63
64    \mu = qB
65
66
67The scattering intensity per unit volume is returned in units of |cm^-1|.
68
69NB: The 2nd virial coefficient of the parallelepiped is calculated based on
70the averaged effective radius $(=\sqrt{A B / \pi})$ and
71length $(= C)$ values, and used as the effective radius for
72$S(q)$ when $P(q) \cdot S(q)$ is applied.
73
74To provide easy access to the orientation of the parallelepiped, we define
75three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
76$\phi$ is the same as for the cylinder model (see also figures below).
77
78.. Comment by Miguel Gonzalez:
79   The following text has been commented because I think there are two
80   mistakes. Psi is the rotational angle around C (but I cannot understand
81   what it means against the q plane) and psi=0 corresponds to a||x and b||y.
82
83   The angle $\Psi$ is the rotational angle around the $C$ axis against
84   the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
85   to the $x$-axis of the detector.
86
87The angle $\Psi$ is the rotational angle around the $C$ axis.
88For $\theta = 0$ and $\phi = 0$, $\Psi = 0$ corresponds to the $B$ axis
89oriented parallel to the y-axis of the detector with $A$ along the z-axis.
90For other $\theta$, $\phi$ values, the parallelepiped has to be first rotated
91$\theta$ degrees around $z$ and $\phi$ degrees around $y$,
92before doing a final rotation of $\Psi$ degrees around the resulting $C$ to
93obtain the final orientation of the parallelepiped.
94For example, for $\theta = 0$ and $\phi = 90$, we have that $\Psi = 0$
95corresponds to $A$ along $x$ and $B$ along $y$,
96while for $\theta = 90$ and $\phi = 0$, $\Psi = 0$ corresponds to
97$A$ along $z$ and $B$ along $x$.
98
99.. _parallelepiped-orientation:
100
101.. figure:: img/parallelepiped_angle_definition.jpg
102
103    Definition of the angles for oriented parallelepipeds.
104
105.. figure:: img/parallelepiped_angle_projection.jpg
106
107    Examples of the angles for oriented parallelepipeds against the detector plane.
108
109For a given orientation of the parallelepiped, the 2D form factor is calculated as
110
111.. math::
112
113    P(q_x, q_y) = \left[\frac{sin(qA\cos\alpha/2)}{(qA\cos\alpha/2)}\right]^2
114                  \left[\frac{sin(qB\cos\beta/2)}{(qB\cos\beta/2)}\right]^2
115                  \left[\frac{sin(qC\cos\gamma/2)}{(qC\cos\gamma/2)}\right]^2
116
117with
118
119.. math::
120
121    \cos\alpha = \hat A \cdot \hat q, \;
122    \cos\beta  = \hat B \cdot \hat q, \;
123    \cos\gamma = \hat C \cdot \hat q
124
125and the scattering intensity as:
126
127.. math::
128
129    I(q_x, q_y) = \frac{\text{scale}}{V} V^2 \Delta\rho^2 P(q_x, q_y) + \text{background}
130
131.. Comment by Miguel Gonzalez:
132   This reflects the logic of the code, as in parallelepiped.c the call
133   to _pkernel returns P(q_x, q_y) and then this is multiplied by V^2 * (delta rho)^2.
134   And finally outside parallelepiped.c it will be multiplied by scale, normalized by
135   V and the background added. But mathematically it makes more sense to write
136   I(q_x, q_y) = \text{scale} V \Delta\rho^2 P(q_x, q_y) + \text{background},
137   with scale being the volume fraction.
138
139
140Validation
141----------
142
143Validation of the code was done by comparing the output of the 1D calculation
144to the angular average of the output of a 2D calculation over all possible
145angles.
146
147This model is based on form factor calculations implemented in a c-library
148provided by the NIST Center for Neutron Research (Kline, 2006).
149
150References
151----------
152
153None.
154"""
155
156import numpy as np
157from numpy import pi, inf, sqrt
158
159name = "parallelepiped"
160title = "Rectangular parallelepiped with uniform scattering length density."
161description = """
162    I(q)= scale*V*(sld - solvent_sld)^2*P(q,alpha)+background
163        P(q,alpha) = integral from 0 to 1 of ...
164           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
165        with
166            phi(mu,a) = integral from 0 to 1 of ..
167            (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
168            S(x) = sin(x)/x
169            mu = q*B
170        V: Volume of the rectangular parallelepiped
171        alpha: angle between the long axis of the
172            parallelepiped and the q-vector for 1D
173"""
174category = "shape:parallelepiped"
175
176#             ["name", "units", default, [lower, upper], "type","description"],
177parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "",
178               "Parallelepiped scattering length density"],
179              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
180               "Solvent scattering length density"],
181              ["a_side", "Ang", 35, [0, inf], "volume",
182               "Shorter side of the parallelepiped"],
183              ["b_side", "Ang", 75, [0, inf], "volume",
184               "Second side of the parallelepiped"],
185              ["c_side", "Ang", 400, [0, inf], "volume",
186               "Larger side of the parallelepiped"],
187              ["theta", "degrees", 60, [-inf, inf], "orientation",
188               "In plane angle"],
189              ["phi", "degrees", 60, [-inf, inf], "orientation",
190               "Out of plane angle"],
191              ["psi", "degrees", 60, [-inf, inf], "orientation",
192               "Rotation angle around its own c axis against q plane"],
193             ]
194
195source = ["lib/gauss76.c", "parallelepiped.c"]
196
197def ER(a_side, b_side, c_side):
198    """
199        Return effective radius (ER) for P(q)*S(q)
200    """
201
202    # surface average radius (rough approximation)
203    surf_rad = sqrt(a_side * b_side / pi)
204
205    ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))
206    return 0.5 * (ddd) ** (1. / 3.)
207
208# VR defaults to 1.0
209
210# parameters for demo
211demo = dict(scale=1, background=0,
212            sld=6.3e-6, solvent_sld=1.0e-6,
213            a_side=35, b_side=75, c_side=400,
214            theta=45, phi=30, psi=15,
215            a_side_pd=0.1, a_side_pd_n=10,
216            b_side_pd=0.1, b_side_pd_n=1,
217            c_side_pd=0.1, c_side_pd_n=1,
218            theta_pd=10, theta_pd_n=1,
219            phi_pd=10, phi_pd_n=1,
220            psi_pd=10, psi_pd_n=10)
221
222# For testing against the old sasview models, include the converted parameter
223# names and the target sasview model name.
224oldname = 'ParallelepipedModel'
225oldpars = dict(theta='parallel_theta', phi='parallel_phi', psi='parallel_psi',
226               a_side='short_a', b_side='short_b', c_side='long_c',
227               sld='sldPipe', solvent_sld='sldSolv')
228
229
230qx, qy = 0.2 * np.cos(2.5), 0.2 * np.sin(2.5)
231tests = [[{}, 0.2, 0.17758004974],
232         [{}, [0.2], [0.17758004974]],
233         [{'theta':10.0, 'phi':10.0}, (qx, qy), 0.00560296014],
234         [{'theta':10.0, 'phi':10.0}, [(qx, qy)], [0.00560296014]],
235        ]
236del qx, qy  # not necessary to delete, but cleaner
Note: See TracBrowser for help on using the repository browser.