source: sasmodels/sasmodels/models/parallelepiped.py @ 9aac25d

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 9aac25d was eb69cce, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

make model docs more consistent; build pdf docs

  • Property mode set to 100644
File size: 5.6 KB
RevLine 
[c5b7d07]1# parallelepiped model
2# Note: model title and parameter table are inserted automatically
3r"""
4The form factor is normalized by the particle volume.
5
6Definition
7----------
8
[eb69cce]9This model provides the form factor, $P(q)$, for a rectangular parallelepiped
[33e91b1]10(below) where the form factor is normalized by the volume of the
[d138d43]11parallelepiped. If you need to apply polydispersity, see also
12rectangular_prism_.
[c5b7d07]13
14The calculated form factor is:
15
16.. math::
17
[eb69cce]18    P(q) = \frac{\text{scale}}{V} F^2(q) + \text{background}
[c5b7d07]19
[eb69cce]20where the volume $V = A B C$ and the averaging $\left<\ldots\right>$ is
21applied over all orientations for 1D.
[c5b7d07]22
[9fd094c]23.. figure:: img/parallelepiped.jpg
[c5b7d07]24
[9fd094c]25   Parallelepiped with the corresponding definition of sides.
[c5b7d07]26
[eb69cce]27The edge of the solid must satisfy the condition that $A < B < C$.
28Then, assuming $a = A/B < 1$, $b = B /B = 1$, and $c = C/B > 1$, the
29form factor is
[c5b7d07]30
31.. math::
32
[eb69cce]33    P(q) = \frac{\text{scale}}{V}\int_0^1
34        \phi\left(\mu \sqrt{1-\sigma^2},a\right)
35        \left[S(\mu c \sigma/2)\right]^2 d\sigma
[c5b7d07]36
37with
38
39.. math::
40
[eb69cce]41    \phi(\mu,a) = \int_0^1
42        \left\{S\left[\frac{\mu}{2}\cos(\frac{\pi}{2}u)\right]
43               S\left[\frac{\mu a}{2}\sin(\frac{\pi}{2}u)\right]
44               \right\}^2 du
[c5b7d07]45
46    S(x) = \frac{\sin x}{x}
[33e91b1]47
[c5b7d07]48    \mu = qB
49
50and the contrast is defined as
51
52.. math::
53
54    \Delta\rho = \rho_{\textstyle p} - \rho_{\textstyle solvent}
55
[33e91b1]56The scattering intensity per unit volume is returned in units of |cm^-1|;
[eb69cce]57i.e., $I(q) = \phi P(q)$.
[c5b7d07]58
[33e91b1]59NB: The 2nd virial coefficient of the parallelpiped is calculated based on
[eb69cce]60the averaged effective radius $(=\sqrt{A B / \pi})$ and
61length $(= C)$ values, and used as the effective radius for
62$S(q)$ when $P(q) \cdot S(q)$ is applied.
[c5b7d07]63
[33e91b1]64To provide easy access to the orientation of the parallelepiped, we define
[eb69cce]65three angles $\theta$, $\phi$ and $\Psi$. The definition of $\theta$ and
66$\phi$ is the same as for the cylinder model (see also figures below).
67The angle $\Psi$ is the rotational angle around the $C$ axis against
68the $q$ plane. For example, $\Psi = 0$ when the $B$ axis is parallel
69to the $x$-axis of the detector.
[c5b7d07]70
71
72.. _parallelepiped-orientation:
73
74.. figure:: img/orientation.jpg
75
76    Definition of the angles for oriented parallelepipeds.
77
78.. figure:: img/orientation2.jpg
79
80    Examples of the angles for oriented parallelepipeds against the detector plane.
81
82
83Validation
84----------
85
[33e91b1]86Validation of the code was done by comparing the output of the 1D calculation
87to the angular average of the output of a 2D calculation over all possible
88angles. The Figure below shows the comparison where the solid dot refers to
89averaged 2D while the line represents the result of the 1D calculation (for
[eb69cce]90the averaging, 76, 180, 76 points are taken for the angles of $\theta$,
91$\phi$, and $\Psi$ respectively).
[c5b7d07]92
93.. _parallelepiped-compare:
94
[eb69cce]95.. figure:: img/parallelepiped_compare.png
[c5b7d07]96
[9fd094c]97   Comparison between 1D and averaged 2D.
[c5b7d07]98
[33e91b1]99This model reimplements the form factor calculations implemented in a c-library
[c5b7d07]100provided by the NIST Center for Neutron Research (Kline, 2006).
101
102"""
103
[33e91b1]104from numpy import pi, inf, sqrt
[c5b7d07]105
106name = "parallelepiped"
107title = "Rectangular parallelepiped with uniform scattering length density."
108description = """
109     P(q)= scale/V*integral from 0 to 1 of ...
110           phi(mu*sqrt(1-sigma^2),a) * S(mu*c*sigma/2)^2 * dsigma
[33e91b1]111
[c5b7d07]112            phi(mu,a) = integral from 0 to 1 of ..
[33e91b1]113        (S((mu/2)*cos(pi*u/2))*S((mu*a/2)*sin(pi*u/2)))^2 * du
[c5b7d07]114            S(x) = sin(x)/x
[33e91b1]115        mu = q*B
[c5b7d07]116"""
[a5d0d00]117category = "shape:parallelpiped"
[c5b7d07]118
[3e428ec]119#             ["name", "units", default, [lower, upper], "type","description"],
120parameters = [["sld", "1e-6/Ang^2", 4, [-inf, inf], "",
121               "Parallelepiped scattering length density"],
122              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
123               "Solvent scattering length density"],
124              ["a_side", "Ang", 35, [0, inf], "volume",
125               "Shorter side of the parallelepiped"],
126              ["b_side", "Ang", 75, [0, inf], "volume",
127               "Second side of the parallelepiped"],
128              ["c_side", "Ang", 400, [0, inf], "volume",
129               "Larger side of the parallelepiped"],
130              ["theta", "degrees", 60, [-inf, inf], "orientation",
131               "In plane angle"],
132              ["phi", "degrees", 60, [-inf, inf], "orientation",
133               "Out of plane angle"],
134              ["psi", "degrees", 60, [-inf, inf], "orientation",
135               "Rotation angle around its own c axis against q plane"],
136             ]
[c5b7d07]137
[33e91b1]138source = ["lib/J1.c", "lib/gauss76.c", "parallelepiped.c"]
[c5b7d07]139
140def ER(a_side, b_side, c_side):
141
142    # surface average radius (rough approximation)
143    surf_rad = sqrt(a_side * b_side / pi)
144
145    # DiamCyl recoded here (to check and possibly put in a library?)
146    a = surf_rad
147    b = 0.5 * c_side
148    t1 = a * a * b
[33e91b1]149    t2 = 1.0 + (b / a) * (1.0 + a / b / 2.0) * (1.0 + pi * a / b / 2.0)
[c5b7d07]150    ddd = 3.0 * t1 * t2
151
[33e91b1]152    return 0.5 * (ddd) ** (1. / 3.)
[c5b7d07]153
154# parameters for demo
[3e428ec]155demo = dict(scale=1, background=0,
156            sld=6.3e-6, solvent_sld=1.0e-6,
157            a_side=35, b_side=75, c_side=400,
158            theta=45, phi=30, psi=15,
159            a_side_pd=0.1, a_side_pd_n=10,
160            b_side_pd=0.1, b_side_pd_n=1,
[cd3dba0]161            c_side_pd=0.1, c_side_pd_n=1,
[3e428ec]162            theta_pd=10, theta_pd_n=1,
163            phi_pd=10, phi_pd_n=1,
164            psi_pd=10, psi_pd_n=10)
[c5b7d07]165
166# For testing against the old sasview models, include the converted parameter
167# names and the target sasview model name.
[33e91b1]168oldname = 'ParallelepipedModel'
169oldpars = dict(theta='parallel_theta', phi='parallel_phi', psi='parallel_psi',
170               a_side='short_a', b_side='short_b', c_side='long_c',
171               sld='sldPipe', solvent_sld='sldSolv')
[c5b7d07]172
Note: See TracBrowser for help on using the repository browser.