source: sasmodels/sasmodels/models/mono_gauss_coil.py @ a807206

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since a807206 was a807206, checked in by butler, 8 years ago

updating more parameter names addressing #649

  • Property mode set to 100644
File size: 2.8 KB
RevLine 
[246517d]1#mono_gauss_coil model
2#conversion of DebyeModel.py
3#converted by Steve King, Mar 2016
4r"""
[40a87fa]5This Debye Gaussian coil model strictly describes the scattering from
6*monodisperse* polymer chains in theta solvents or polymer melts, conditions
7under which the distances between segments follow a Gaussian distribution.
8Provided the number of segments is large (ie, high molecular weight polymers)
9the single-chain form factor P(Q) is that described by Debye (1947).
[246517d]10
[40a87fa]11To describe the scattering from *polydisperse* polymer chains see the
12:ref:`poly-gauss-coil` model.
[246517d]13
14Definition
15----------
16
[40a87fa]17.. math::
18
19     I(q) = \text{scale} \cdot I_0 \cdot P(q) + \text{background}
[15bd6e7]20
[246517d]21where
22
[40a87fa]23.. math::
[246517d]24
[40a87fa]25     I_0 &= \phi_\text{poly} \cdot V
26            \cdot (\rho_\text{poly} - \rho_\text{solv})^2
[15bd6e7]27
[40a87fa]28     P(q) &= 2 [\exp(-Z) + Z - 1] / Z^2
[246517d]29
[40a87fa]30     Z &= (q R_g)^2
[246517d]31
[40a87fa]32     V &= M / (N_A \delta)
[15bd6e7]33
[40a87fa]34Here, $\phi_\text{poly}$ is the volume fraction of polymer, $V$ is the
35volume of a polymer coil, *M* is the molecular weight of the polymer,
36$N_A$ is Avogadro's Number, $\delta$ is the bulk density of the polymer,
37$\rho_\text{poly}$ is the sld of the polymer, $\rho\text{solv}$ is the
38sld of the solvent, and $R_g$ is the radius of gyration of the polymer coil.
[246517d]39
[40a87fa]40The 2D scattering intensity is calculated in the same way as the 1D,
41but where the *q* vector is redefined as
[246517d]42
43.. math::
44
45    q = \sqrt{q_x^2 + q_y^2}
46
47References
48----------
49
50P Debye, *J. Phys. Colloid. Chem.*, 51 (1947) 18.
51
[40a87fa]52R J Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*,
53Oxford University Press, New York (2000).
[246517d]54
55http://www.ncnr.nist.gov/staff/hammouda/distance_learning/chapter_28.pdf
56"""
57
[2c74c11]58from numpy import inf, exp, errstate
[246517d]59
[40a87fa]60name = "mono_gauss_coil"
61title = "Scattering from monodisperse polymer coils"
[246517d]62
[40a87fa]63description = """
[246517d]64    Evaluates the scattering from
[15bd6e7]65    monodisperse polymer chains.
[246517d]66    """
[40a87fa]67category = "shape-independent"
[246517d]68
[40a87fa]69# pylint: disable=bad-whitespace, line-too-long
70#   ["name", "units", default, [lower, upper], "type", "description"],
71parameters = [
72    ["i_zero", "1/cm", 70.0, [0.0, inf], "", "Intensity at q=0"],
[a807206]73    ["rg", "Ang", 75.0, [0.0, inf], "", "Radius of gyration"],
[40a87fa]74    ]
75# pylint: enable=bad-whitespace, line-too-long
[246517d]76
77# NB: Scale and Background are implicit parameters on every model
[a807206]78def Iq(q, i_zero, rg):
[246517d]79    # pylint: disable = missing-docstring
[a807206]80    z = (q * rg)**2
[246517d]81
[2c74c11]82    with errstate(invalid='ignore'):
83        inten = (i_zero * 2.0) * (exp(-z) + z - 1.0)/z**2
84        inten[q == 0] = i_zero
85    return inten
86Iq.vectorized = True # Iq accepts an array of q values
[246517d]87
[a807206]88demo = dict(scale=1.0, i_zero=70.0, rg=75.0, background=0.0)
[246517d]89
[f10bc52]90# these unit test values taken from SasView 3.1.2
[40a87fa]91tests = [
[a807206]92    [{'scale': 1.0, 'i_zero': 70.0, 'rg': 75.0, 'background': 0.0},
[15bd6e7]93     [0.0106939, 0.469418], [57.1241, 0.112859]],
[246517d]94    ]
Note: See TracBrowser for help on using the repository browser.