source: sasmodels/sasmodels/models/hollow_rectangular_prism.py @ 6dd90c1

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 6dd90c1 was 6dd90c1, checked in by Paul Kienzle <pkienzle@…>, 8 years ago

update model tests for default background of 0.001

  • Property mode set to 100644
File size: 6.0 KB
Line 
1# rectangular_prism model
2# Note: model title and parameter table are inserted automatically
3r"""
4
5This model provides the form factor, *P(q)*, for a hollow rectangular
6parallelepiped with a wall of thickness |bigdelta|.
7It computes only the 1D scattering, not the 2D.
8
9Definition
10----------
11
12The 1D scattering intensity for this model is calculated by forming
13the difference of the amplitudes of two massive parallelepipeds
14differing in their outermost dimensions in each direction by the
15same length increment :math:`2\Delta` (Nayuk, 2012).
16
17As in the case of the massive parallelepiped model (:ref:`rectangular-prism`),
18the scattering amplitude is computed for a particular orientation of the
19parallelepiped with respect to the scattering vector and then averaged over all
20possible orientations, giving
21
22.. math::
23  P(q) =  \frac{1}{V^2} \frac{2}{\pi} \times \, \int_0^{\frac{\pi}{2}} \,
24  \int_0^{\frac{\pi}{2}} A_{P\Delta}^2(q) \, \sin\theta \, d\theta \, d\phi
25
26where |theta| is the angle between the *z* axis and the longest axis
27of the parallelepiped, |phi| is the angle between the scattering vector
28(lying in the *xy* plane) and the *y* axis, and
29
30.. math::
31  :nowrap:
32
33  \begin{align}
34  A_{P\Delta}(q) & =  A B C
35    \left[\frac{\sin \bigl( q \frac{C}{2} \cos\theta \bigr)}
36    {\left( q \frac{C}{2} \cos\theta \right)} \right]
37    \left[\frac{\sin \bigl( q \frac{A}{2} \sin\theta \sin\phi \bigr)}
38    {\left( q \frac{A}{2} \sin\theta \sin\phi \right)}\right]
39    \left[\frac{\sin \bigl( q \frac{B}{2} \sin\theta \cos\phi \bigr)}
40    {\left( q \frac{B}{2} \sin\theta \cos\phi \right)}\right] \\
41    & - 8
42    \left(\frac{A}{2}-\Delta\right) \left(\frac{B}{2}-\Delta\right) \left(\frac{C}{2}-\Delta\right)
43    \left[ \frac{\sin \bigl[ q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta \bigr]}
44    {q \bigl(\frac{C}{2}-\Delta\bigr) \cos\theta} \right]
45    \left[ \frac{\sin \bigl[ q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi \bigr]}
46    {q \bigl(\frac{A}{2}-\Delta\bigr) \sin\theta \sin\phi} \right]
47    \left[ \frac{\sin \bigl[ q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi \bigr]}
48    {q \bigl(\frac{B}{2}-\Delta\bigr) \sin\theta \cos\phi} \right]
49  \end{align}
50
51where *A*, *B* and *C* are the external sides of the parallelepiped fulfilling
52:math:`A \le B \le C`, and the volume *V* of the parallelepiped is
53
54.. math::
55  V = A B C \, - \, (A - 2\Delta) (B - 2\Delta) (C - 2\Delta)
56
57The 1D scattering intensity is then calculated as
58
59.. math::
60  I(q) = \mbox{scale} \times V \times (\rho_{\mbox{p}} -
61  \rho_{\mbox{solvent}})^2 \times P(q)
62
63where :math:`\rho_{\mbox{p}}` is the scattering length of the parallelepiped,
64:math:`\rho_{\mbox{solvent}}` is the scattering length of the solvent,
65and (if the data are in absolute units) *scale* represents the volume fraction
66(which is unitless).
67
68**The 2D scattering intensity is not computed by this model.**
69
70
71Validation
72----------
73
74Validation of the code was conducted by qualitatively comparing the output
75of the 1D model to the curves shown in (Nayuk, 2012).
76
77REFERENCES
78
79R Nayuk and K Huber, *Z. Phys. Chem.*, 226 (2012) 837-854
80
81"""
82
83from numpy import pi, inf, sqrt
84
85name = "hollow_rectangular_prism"
86title = "Hollow rectangular parallelepiped with uniform scattering length density."
87description = """
88    I(q)= scale*V*(sld - solvent_sld)^2*P(q,theta,phi)+background
89        P(q,theta,phi) = (2/pi/V^2) * double integral from 0 to pi/2 of ...
90           (AP1-AP2)^2(q)*sin(theta)*dtheta*dphi
91        AP1 = S(q*C*cos(theta)/2) * S(q*A*sin(theta)*sin(phi)/2) * S(q*B*sin(theta)*cos(phi)/2)
92        AP2 = S(q*C'*cos(theta)) * S(q*A'*sin(theta)*sin(phi)) * S(q*B'*sin(theta)*cos(phi))
93        C' = (C/2-thickness)
94        B' = (B/2-thickness)
95        A' = (A/2-thickness)
96        S(x) = sin(x)/x
97"""
98category = "shape:parallelepiped"
99
100#             ["name", "units", default, [lower, upper], "type","description"],
101parameters = [["sld", "1e-6/Ang^2", 6.3, [-inf, inf], "",
102               "Parallelepiped scattering length density"],
103              ["solvent_sld", "1e-6/Ang^2", 1, [-inf, inf], "",
104               "Solvent scattering length density"],
105              ["a_side", "Ang", 35, [0, inf], "volume",
106               "Shorter side of the parallelepiped"],
107              ["b2a_ratio", "Ang", 1, [0, inf], "volume",
108               "Ratio sides b/a"],
109              ["c2a_ratio", "Ang", 1, [0, inf], "volume",
110               "Ratio sides c/a"],
111              ["thickness", "Ang", 1, [0, inf], "volume",
112               "Thickness of parallelepiped"],
113             ]
114
115source = ["lib/J1.c", "lib/gauss76.c", "hollow_rectangular_prism.c"]
116
117def ER(a_side, b2a_ratio, c2a_ratio, thickness):
118    """
119        Return equivalent radius (ER)
120        thickness parameter not used
121    """
122    b_side = a_side * b2a_ratio
123    c_side = a_side * c2a_ratio
124
125    # surface average radius (rough approximation)
126    surf_rad = sqrt(a_side * b_side / pi)
127
128    ddd = 0.75 * surf_rad * (2 * surf_rad * c_side + (c_side + surf_rad) * (c_side + pi * surf_rad))
129    return 0.5 * (ddd) ** (1. / 3.)
130
131def VR(a_side, b2a_ratio, c2a_ratio, thickness):
132    """
133        Return shell volume and total volume
134    """
135    b_side = a_side * b2a_ratio
136    c_side = a_side * c2a_ratio
137    a_core = a_side - 2.0*thickness
138    b_core = b_side - 2.0*thickness
139    c_core = c_side - 2.0*thickness
140    vol_core = a_core * b_core * c_core
141    vol_total = a_side * b_side * c_side
142    vol_shell = vol_total - vol_core
143    return vol_total, vol_shell
144
145
146# parameters for demo
147demo = dict(scale=1, background=0,
148            sld=6.3e-6, solvent_sld=1.0e-6,
149            a_side=35, b2a_ratio=1, c2a_ratio=1, thickness=1,
150            a_side_pd=0.1, a_side_pd_n=10,
151            b2a_ratio_pd=0.1, b2a_ratio_pd_n=1,
152            c2a_ratio_pd=0.1, c2a_ratio_pd_n=1)
153
154# For testing against the old sasview models, include the converted parameter
155# names and the target sasview model name.
156oldname = 'RectangularHollowPrismModel'
157oldpars = dict(a_side='short_side', b2a_ratio='b2a_ratio', c_side='c2a_ratio',
158               thickness='thickness', sld='sldPipe', solvent_sld='sldSolv')
159
160tests = [[{}, 0.2, 0.76687283098],
161         [{}, [0.2], [0.76687283098]],
162        ]
163
Note: See TracBrowser for help on using the repository browser.