source: sasmodels/sasmodels/models/hollow_cylinder.py @ 321736f

core_shell_microgelscostrafo411magnetic_modelrelease_v0.94release_v0.95ticket-1257-vesicle-productticket_1156ticket_1265_superballticket_822_more_unit_tests
Last change on this file since 321736f was 0420af7, checked in by krzywon, 8 years ago

Modified hollow_cylinder to reject invalid inputs, added VR, ER and
tests. Si now has pre-calculated factorials for faster processing.

  • Property mode set to 100644
File size: 4.6 KB
Line 
1r"""
2This model provides the form factor, $P(q)$, for a monodisperse hollow right
3angle circular cylinder (tube) where the form factor is normalized by the
4volume of the tube
5
6.. math::
7
8    P(q) = \text{scale} \left<F^2\right>/V_\text{shell} + \text{background}
9
10where the averaging $\left<\ldots\right>$ is applied only for the 1D calculation.
11
12The inside and outside of the hollow cylinder are assumed have the same SLD.
13
14Definition
15----------
16
17The 1D scattering intensity is calculated in the following way (Guinier, 1955)
18
19.. math::
20
21    P(q)           &= (\text{scale})V_\text{shell}\Delta\rho^2
22            \int_0^{1}\Psi^2
23            \left[q_z, R_\text{shell}(1-x^2)^{1/2},
24                       R_\text{core}(1-x^2)^{1/2}\right]
25            \left[\frac{\sin(qHx)}{qHx}\right]^2 dx \\
26    \Psi[q,y,z]    &= \frac{1}{1-\gamma^2}
27            \left[ \Lambda(qy) - \gamma^2\Lambda(qz) \right] \\
28    \Lambda(a)     &= 2 J_1(a) / a \\
29    \gamma         &= R_\text{core} / R_\text{shell} \\
30    V_\text{shell} &= \pi \left(R_\text{shell}^2 - R_\text{core}^2 \right)L \\
31    J_1(x)         &= (\sin(x)-x\cdot \cos(x)) / x^2
32
33where *scale* is a scale factor and $J_1$ is the 1st order
34Bessel function.
35
36To provide easy access to the orientation of the core-shell cylinder, we define
37the axis of the cylinder using two angles $\theta$ and $\phi$. As for the case
38of the cylinder, those angles are defined in Figure 2 of the CylinderModel.
39
40**NB**: The 2nd virial coefficient of the cylinder is calculated
41based on the radius and 2 length values, and used as the effective radius
42for $S(q)$ when $P(q) \cdot S(q)$ is applied.
43
44In the parameters, the contrast represents SLD :sub:`shell` - SLD :sub:`solvent`
45and the *radius* is $R_\text{shell}$ while *core_radius* is $R_\text{core}$.
46
47.. figure:: img/hollow_cylinder_1d.jpg
48
49    1D plot using the default values (w/1000 data point).
50
51.. figure:: img/orientation.jpg
52
53    Definition of the angles for the oriented hollow_cylinder model.
54
55.. figure:: img/orientation2.jpg
56
57    Examples of the angles for oriented pp against the detector plane.
58
59References
60----------
61
62L A Feigin and D I Svergun, *Structure Analysis by Small-Angle X-Ray and
63Neutron Scattering*, Plenum Press, New York, (1987)
64"""
65
66from numpy import pi, inf
67
68name = "hollow_cylinder"
69title = ""
70description = """
71P(q) = scale*<f*f>/Vol + background, where f is the scattering amplitude.
72core_radius = the radius of core
73radius = the radius of shell
74length = the total length of the cylinder
75sld = SLD of the shell
76solvent_sld = SLD of the solvent
77background = incoherent background
78"""
79category = "shape:cylinder"
80
81#             ["name", "units", default, [lower, upper], "type","description"],
82parameters = [
83              ["radius", "Ang", 30.0, [0, inf], "volume", "Cylinder radius"],
84              ["core_radius", "Ang", 20.0, [0, inf], "volume", "Hollow core radius"],
85              ["length", "Ang", 400.0, [0, inf], "volume", "Cylinder length"],
86              ["sld", "1/Ang^2", 6.3, [-inf, inf], "", "Cylinder sld"],
87              ["solvent_sld", "1/Ang^2", 1, [-inf, inf], "", "Solvent sld"],
88              ["theta", "degrees", 90, [-360, 360], "orientation", "Theta angle"],
89              ["phi", "degrees", 0, [-360, 360], "orientation", "Phi angle"],
90              ]
91
92source = ["lib/J1.c", "lib/gauss76.c", "hollow_cylinder.c"]
93
94def ER(radius, core_radius, length):
95    if radius == 0 or length == 0:
96        return 0.0
97    len1 = radius
98    len2 = length/2.0
99    term1 = len1*len1*2.0*len2/2.0
100    term2 = 1.0 + (len2/len1)*(1.0 + 1/len2/2.0)*(1.0 + pi*len1/len2/2.0)
101    ddd = 3.0*term1*term2
102    diam = pow(ddd, (1.0/3.0))
103    return diam
104
105def VR(radius, core_radius, length):
106    vol_core = pi*core_radius*core_radius*length
107    vol_total = pi*radius*radius*length
108    vol_shell = vol_total - vol_core
109    return vol_shell, vol_total
110
111# parameters for demo
112demo = dict(scale=1.0,background=0.0,length=400.0,radius=30.0,core_radius=20.0,
113            sld=6.3,solvent_sld=1,theta=90,phi=0,
114            radius_pd=.2, radius_pd_n=9,
115            length_pd=.2, length_pd_n=10,
116            core_radius_pd=.2, core_radius_pd_n=9,
117            theta_pd=10, theta_pd_n=5,
118            )
119
120# For testing against the old sasview models, include the converted parameter
121# names and the target sasview model name.
122oldname = 'HollowCylinderModel'
123oldpars = dict(scale='scale',background='background',radius='radius',
124               core_radius='core_radius',sld='sldCyl',length='length',
125               solvent_sld='sldSolv',phi='axis_phi',theta='axis_theta')
126
127# Parameters for unit tests
128tests = [
129         [{"radius" : 30.0},0.00005,1764.926],
130         [{},'VR',1.8],
131         [{},0.001,1756.76]
132         ]
Note: See TracBrowser for help on using the repository browser.